
D
R

A
FT

SANDIA REPORT
SAND2008-xxx
Unlimited Release
Printed ??? 2008

Thyra Coding and
Documentation Guidelines

(TCDG)

Version 1.0

Roscoe A. Bartlett
Optimization & Uncertainty Estimation Department

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

D
R

A
FT

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia

Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government, nor any agency thereof, nor any of their employees,

nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,

or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-

mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government, any agency thereof, or any of their contractors

or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of

the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available

copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A

2

D
R

A
FT

SAND2008-xxx
Unlimited Release
Printed ??? 2008

Thyra Coding and
Documentation Guidelines

(TCDG)

Version 1.0

Roscoe A. Bartlett
Optimization/Uncertainty Estim

Sandia National Laboratories∗, Albuquerque NM 87185 USA,

Abstract

Coding guidelines help to improve the quality of code and facilitate collaborative
development. This document covers C++ code, code formatting, and Doxygen documentation
guildelines that have been established for the Trilinos Thyra package and related C++ codes.
Many of these guidelines are followed in other Trilinos packages as well. While the guidelines
outlined in this document are related to Thyra C++ code, mostof the guidelines are more
general that Thyra and even Trilinos.

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.

3

D
R

A
FT

Acknowledgment

4

D
R

A
FT

Contents

1 Introduction .. 7
2 Alpha-numeric item designations .. 9
3 Naming conventions (NC) .. 10
4 Naming and organization of source files (NOSF) 14
5 Coding guidelines .. 15

5.1 General coding guidelines (GCG) .. 15
5.1.1 Error handling 15
5.1.2 Memory management 15
5.1.3 Object Control 17
5.1.4 Object Introspection 17
5.1.5 Miscellaneous coding guidelines 18

5.2 Specification of formal arguments for C++ functions (SFA) . 22
5.2.1 Variations in passing single changeable objects 27

6 Formatting of source code. .. 28
6.1 General principles for formatting of source code (FSCP). 28
6.2 Specific source code formatting principles (FSC) 29

7 Doxygen documentation guidelines .. 38
7.1 General principles for function and class level documentation (DOXP) 38
7.2 Specific Doxygen documentation principles (DOX) 39

References .. 42

Appendix

A Summary of guidelines .. 43
B Summary of “C++ Coding Standards” (CPPCS) with amendments. 49
C Miscellaneous amendments to “C++ Coding Standards” 53

C.1 Amendments to items related to compiler/linker incompatibilities 53
C.2 Amendments for ’using’ declarations and directives 53

D Arguments for adopting a consistent code formatting style. 59
D.1 Statements on coding style from varied persons and/or organizations 59

D.1.1 Open source software (the GNU project) 59
D.1.2 Agile Methods (Extreme Programming) 60
D.1.3 Code Complete 61
D.1.4 Lockheed Martin Joint Strike Fighter C++ Coding Standard 62

D.2 The keyboard analogy for coding styles 63
D.3 Conclusions .. 63

E Guidelines for reformatting of source code 65

5

D
R

A
FT

6

D
R

A
FT

1 Introduction

This document deals with C++ coding guidelines that are based primarily on the book “C++
Coding Standards” by Sutter and Alexandrescu [9] (outlinedin Appendix B). The guidelines in this
document are specifically designed to address the development of object-oriented numerical C++
libraries and to utilize the tools in the Trilinos packageTeuchos . While the main purpose of of this
document is to define guidelines for Thyra software (for bothinterfaces and adapters), it is also
general enough to be applied to many other projects that, forinstance, might interact with Thyra.

The goal of this document is not to restate what is in [9] but instead to fill in some gaps
intentionally left by the authors and to provide amendmentsto specific items in the book and tailor
them for numerical libraries. The zeroth item (first item, zero based) “Don’t sweat the small stuff”
intentionally avoids specific recommendations on issues such as the conventions for naming
identifiers and the formatting of code since these are arbitrary. While issues related to coding style
are much less important that other issues, there are arguments for adopting a more consistent code
formatting style and some of these arguments are outlined inAppendix D. Therefore, one of the
purposes of this document is to suggest reasonable and minimal guidelines for naming conventions
and code formatting that provide for enough code uniformityto facilitate collaborative code
development, code reviews, and maintenance.

More important than code formatting, a consistent set of naming conventions for C++ classes,
functions, variables, and other entities also helps to improve collaborative software development
and quality. Also, since clients of the software must interact with these names, it is even more
important that a set of naming conventions be used as consistently as makes sense.

Lastly, more important general C++ coding guidelines are covered that append and amend those
described in [9]. While formatting and naming recommendations do not affect the meaning of C++
code, other coding guidelines do and therefore they will receive more attention and should be
considered more seriously.

The rest of the main document is organized as follows. An alpha-numeric convention for naming
the various guidelines described in this document is described in Section 2. Then, general naming
conventions are presented in Section 3 and they help providea context for later code examples.
This is followed in Section 4 with guidelines for naming and organizing source files. Next,
important general C++ coding guidelines are described in Section 5 that affect software quality in
critical ways. Unlike naming conventions and code formatting, these guidelines are difficult to
adopt after a significant amount of code has been written. Following this, reasonable and minimal
formatting guidelines are covered in Section 6. Finally, guidelines for Doxygen documentation are
provided in Section 7.

Several appendices are included that deal with a number of topics. The guidelines presented in this
document are summarized in Appendix A. Similarly, the 101 guidelines from [9] are listed in
Appendix B along with specifying which items are amended or invalidated by the guidelines in the
current document. Appendix C discusses the items from [9] that are amended or invalidated here.
Most importantly, a clarification of the use ofusing declarations is given that is both stronger in
some ways and weaker in other ways than what is described in Item 59 in [9]. Appendix D gives
arguments for adopting a consisting code formatting style in a single development team or single
project (which is more consistent with current Agile development methods). Lastly, Appendix E

7

D
R

A
FT

gives guidelines for when one developer can legitimately reformat a source file written by another
developer when a more consistent code formatting style is not agreed upon.

8

D
R

A
FT

2 Alpha-numeric item designations

Specific items in this document are to be refereed to using numerated acronyms starting with and
the version number (e.g. 1.0). For example, the first naming convention guideline can be refereed
to asTCDG 1.0 NC 1. In this way, these short precise alpha-numeric designation such asTCDG
1.0 NC 3can be used in code reviews as short-hand references to specific guidelines. The version
number of the coding standard is important in order to allow changes in future coding guidelines
and allow the numbers to change from version to version (e.g.NC 1 in TCDG 1.0 might become
NC 3 in TCDG X.Y).

In addition, this document is based on [9] and those guidelines will be refereed to using an
enumerated acronym such asCPPCS Item 15(i.e. “Use const proactively”).

9

D
R

A
FT

3 Naming conventions (NC)

C++ classes, functions, variables, data members etc. should be named and used in a fairly
consistent manner. The following guidelines are consistent with common practice as exemplified
in [7].

• NC 1: Capitalize C++ class and struct names asSomeClass: Names for C++ classes and
structs should generally be capitalized and separate wordsshould be concatenated and
capitalized (i.e. “Cammel Cases”). For example:

class SomeClass {...};

• NC 2: Capitalize C++ namespace names asMyNameSpace: C++ namespaces should
follow the same naming convention as C++ classes and namespace names should not contain
too many acronyms and should not be too short or too common. For example:

namespace MyNameSpace {
...
} // namespace MyNameSpace

• NC 3: C++ enum type names should begin withE asEMyEnum and enum values should use
all caps and scope context asMY ENUM VALUE: Enumeration type names should follow the
same convention as for class and struct names but they shouldalso begin with the capital
letter ’E’ to signify that this type is an enum. Enumeration values should be all upper-case
with underscores between words and should use a common prefixfor scoping within the
enum type. Also, enum values should use the default value assignment defined by the
compiler in general as this aids their use as indexes into zero-based arrays. For example:

enum ESolveStatus {
SOLVE_STATUS_CONVERGED,
SOLVE_STATUS_UNCONVERGED,
SOLVE_STATUS_UNKNOWN

};

Justification: Using a capital ’E’ forenums allows the definition of other types with the same
basic name that contain other data. For example,ESolveStatus in anenum enumerating the
different types of solve status andSolveStatus is a C++ struct that contains an
ESolveStatus member along with some other data. The use of the scoping prefix (i.e.
SOLVESTATUS above) is also recommended in [6, Section 11.4].

• NC 4: C++ object instance identifier names should begin with a lower-case letter as
objectName: Formal function arguments and other object identifiers should, in general,
start with a lower-case letter and then use capitalization for following words with no
underscores between words in general. For example:

ClassType1 obj;
ClassType2 objectForMyThing;
ClassType3 objectForYourThing;

10

D
R

A
FT

Exception:Identifiers that have mathematical symbols in them such asx, J, andalpha
should use lower case names separated by underscores. For example:

Vector curr_x;
Matrix curr_J;
Scalar curr_alpha;

Justification:The Java conventionobjectIdentifierName using capitalization with no
underscores produces shorter readable identifiers for English names but does not work well
for identifiers with math symbols. With math symbols, it is important to maintain the case of
the symbol asx andX may mean something totally different mathematically and itis
confusing and/or ambiguous to write eithercurrx or currX . In these cases, it is far better to
use underscores and writecurr x as shown above. While in it is considered bad practice to
differentiate variable names by case alone (see “Don’t differentiate variable names solely by
capitalization” in [6, Section 11.7]), this is very common in math and mathematical software
should support this.

• NC 5: C++ class/struct data member names should begin with a lower-case letter and end
with an underscore assomeDataMember : Names for data members within a class should
use the same naming convention as for other object identifiernames but should end with an
underscore. For example:

class SomeClass {
public:

...
private:

int someDataMember_;
};

Justification:Using an underscore after a data variable name helps to definethe scope of the
variable and differentate that name from a local varaible ora member function that may
otherwise result and result in “shadowing” which causes protability problems on some
compilers.

Exception: Simple C++ structs that do not need to maintain an invariantwith public data
members and no member functions (other than constructors) should not contain underscores.
For example:

struct SolveStatus {
ESolveStatus solveStatus;
double achievedTol;
std::string message;
...

};

Exception:Identifiers that have mathematical symbols in them such asx, J, andalpha
should use lower case names separated by underscores. For example:

Vector curr_x_;
Matrix curr_J_;
Scalar curr_alpha_;

11

D
R

A
FT

Justification:SeeNC 4 above.

• NC 6: C++ function names should begin with a lower-case letter as
someFunction(...): Names for functions should use the same naming convention as
for object identifier. For example:

class SomeClass {
public:

void someMemberFunction(...);
};

void someOtherFunction(...);

Exception:Identifiers that have mathematical symbols in them such asx, J, andalpha
should use lower case names separated by underscores. For example:

class SomeClass {
public:

const Vector& get_x() const;
const Matrix& get_J() const;
Scalar get_alpha() const;

};

Justification:SeeNC 4 above.

• NC 7: Name C++ pure abstract base classesBlobBase, default implementation bases
BlobDefaultBase, and default concrete implementation classes
DefaultTypeABlob: In general, the top-level C++ base class for some abstraction
should use the post-fixBase appended to the class name (e.g.VectorBase) and the base
class should contain (almost) no implementations and certainly no object data (see Item 36
in [9]). If a default implementation of some of the aspects ofthe base class are desired (to
make it easier to define concrete subclasses), then they should be put in a derived node
subclass with the post-fixDefaultBase (e.g.VectorDefaultBase). Any default concrete
implementation of an abstraction should generally use the prefix Default appended to the
beginning of the name along with any other important prefixes(e.g.DefaultSpmdVector).
For example:

// Pure virtual base class
class VectorBase

: ... // Other base classes
{
public:

virtual void applyOp(...) const = 0;
...

};

// Node base class with some default implementations
class VectorDefaultBase

: virtual public VectorBase
{
public:

12

D
R

A
FT

void applyOp(...) const; // default implementation
...

};

// A general default implementation for SPMD vectors
class DefaultSpmdVector

: virtual public VectorDefaultBase // use some default impl ementations
{
public:

void applyOp(...) const; // Specialized overrides
...

private:
...

};

• NC 8: Prefer to name const and non-const access functions asgetPart() and
getNonconstPart(), respectively: In general, functions that return objects that are
contained within a wrapper object should have the prefixnon-const added to the function
that returns the non-const reference (or pointer) to the contained object. For example,

class SomeClass {
public:

RCP<Part> getNonconstPart();
RCP<const Part> getPart() const;
...

};

Justification: The choice to name the access functionsgetNonconstPart() andgetPart()
as opposed togetPart() andgetConstPart() is somewhat arbitrary. However, using
nonconst should be preferred in order to make it more explicit that a non-const object
reference is being requested. Also, a constant view of a partof an object is always cheaper
that returning a non-constant view of the part (see the discussion of the “generalized view”
idiom) and therefore to be safe and error on the side of efficiency, the non-constant access
function should be harder to call than the constant access function.

13

D
R

A
FT

4 Naming and organization of source files (NOSF)

Since most C++ code is organized around classes, the file structure should also primarily be
organized around classes and the nonmember functions that interact with these classes. The
primary goal of these file naming guidelines is to create file names that are globally unique and
will therefore facilitate#include s without need for directory paths in the#include statement.
The basic idea is that a source file should be named based on what it has, not where it is. The
following guidelines help to define how to organize code intosource files and how to name those
source files. The directory structure of source files is beyond the scope of this document.

• NOSF 1: Use file extension names*.hpp (C++ header),*.cpp (C++ source),*.h (C
header), and*.c (C source): These file names avoid common problems with portability to
various Unix and Windows platforms and enable better tools support (like language-specific
formatting in Emacs).

• NOSF 2: Only one major C++ class with supporting code per header and source file with
name(s)NameSpaceA InnerNamespace SomeClass.[hpp,cpp]: As a general
rule of thumb, assign the source code for any major C++ class and supporting code to a
single set of header and source files. The file name should be composed out of the
namespace names enclosing the classes and other code along with the class name itself. For
instance, for the classNameSpaceA::InnerNamespace::SomeClass , the header and source
files would be namedNameSpaceA InnerNamespace SomeClass.[hpp,cpp] . This
convention assures that the file names will be globally unique. In addition, having a single
set of files for each class helps to keep a single encapculation unit of code together which
makes searching the encapsulation unit easier.

• NOSF 3: Use internal include guards in all header files: All header files, without
exception, should use include guards [9, Item 24]. For example, the file
NameSpaceA InnerNamespace SomeClass.hpp would have the basic structure:

// @HEADER
// ...
// @HEADER

#ifndef NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP
#define NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP

#include "SomeFile.hpp"

...

#endif // NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP

Above, the comment// NAMESPACEA INNERNAMESPACESOMECLASSHPPafter the final
#endif helps to show the preprocessor structure in the file and is helpful in cases where
other#ifdef or #if structures are used.

This is a very minor amendment to Item 24 in [9].

14

D
R

A
FT

5 Coding guidelines

Coding guidelines, unlike formatting guidelines, greatlyinfluence the meaning of C++ programs
and therefore require a high priority level. The book “C++ Coding Standards” [9] that this
document is primarily based on provides many good and important coding guidelines that should
be followed and by default all of the items in this book are assumed in this document. Here, we
provide additional coding guidelines and, in some cases, amend items in [9]. Where this document
is silent, [9] is to be considered the authoritative source for guidance. Some miscellaneous
amendments to the items in [9] are given in Appendix C.

5.1 General coding guidelines (GCG)

Below several different general coding guidelines are discussed. These guidelines affect software
quality in a major way and are not just a matter of personal preference or style.

5.1.1 Error handling

• GCG 1: UseTEST FOR EXCEPTION(...),TEUCHOS ASSERT(...) and related
macros for reporting all errors, even developer programming errors: For developer errors,
prefer to throw exceptions derived fromstd::logic error instead of using the
assert(...) macro as recommended in [9, Item 68]. A “logic error” would betreated
differently from a real runtime error and would therefore come with different assumptions
about the state of the object after the exception was thrown.In particular, a “real error” (i.e.
not just an internal developer error) should always providethe basic guarantee to leave the
object in a valid state [9, Item 71], while code that throws a “logic error” can not make any
such guarantees in general. Therefore, objects that throw exceptions derived from
std::logic error should generally be viewed as unusable and should be deleted
immediately. To enable debugging, a breakpoint can always be placed on function
TestForException break() 1 which will be called just before an exception is thrown
through these macros. In the future, more sophisticated features like automatically attaching
a debugger or printing the call stack may be added for some systems. Therefore throwing an
exception derived fromstd::logic error using these macros should be preferred to using
theassert(...) macro as it gives us more control over what happens when one ofthese
types of programming errors occurs. Also, these exception macros make it much easier to
generate good error messages that you would get from a simpleuse of theassert(...)
macro.

5.1.2 Memory management

• GCG 2: Avoid the use of raw C++ pointers in all but the lowest-level code: The tools
mentioned below which include all of the standard C++ container classes (when using a
checked STL implementation),Teuchos::Ptr , Teuchos::RCP , Teuchos::Array ,
Teuchos::ArrayRCP , andTeuchos::ArrayView allow most code to be written without any

1In gdb , a breakpoint would be set asb TestForException break() .

15

D
R

A
FT

explicit raw C++ pointers. In debug mode, these classes allow for full runtime checking that
result in exceptions being thrown and excellent error messages (i.e. instead of segfaults).
When a check C++ standard library is used (e.g. whenGXXLIB DEBUGis defined with g++),
then all of the standard C++ library classes are checked as well.

• GCG 3: Prefer to usestd::string instead ofchar* or const char*: While
std::string is not debug checked in a typical implementation, indexing and other
unchecked operations withstd::string objects is much less common in numerical code
and therefore is less likely to result in memory-usage errors inside of numerical code.
However, when a checked C++ library implementation is used (e.g. when GXXLIB DEBUGis
defined with g++), thenstd::string is very safe.

• GCG 4: UseTeuchos::Ptr as function arguments in the place of raw C++ pointers to
single objects where no persisting association exists: (see Tables 1 and 2): The class
Teuchos::Ptr simply takes the place of a raw pointer to a single object but is always
default initialized to NULL. In debug mode, it throws exceptions when trying to dereference
a null pointer. Using this class helps to eliminates the needfor checking for NULL to avoid
undefined behavior when one dereferences a NULL pointer.

• GCG 5: UseTeuchos::RCP for memory management of single dynamically allocated
objects and for handling persisting [1] associations: (see Tables 1 and 2): Replace all
references to the classboost::shared ptr in all items in [9] withTeuchos::RCP .

• GCG 6: UseTeuchos::ArrayView as function arguments in the place of pointers into
raw arrays or other container classes where no persisting association exists and the array
does not need to be resized: (see Tables 1 and 2): This class allows all of the useful
capabilities of astd::vector which do not include adding or removing entries. In debug
mode, all of the access functions (including iterators) arefully checked. In optimized mode,
unchecked raw pointers are used and the only overhead is a size argument (which is usually
passed with raw pointers anyway).

• GCG 7: PreferTeuchos::Array to std::vector as a contiguous general purpose
data container: (see Tables 1 and 2): The primary reason to useTeuchos::Array instead of
std::vector is thatTeuchos::Array is part of the system memory management types and
results in stronger runtime checking. WhileTeuchos::Array gets all of its real functionality
from std::vector , prefer to useTeuchos::Array as we provide more capabilities and
portable debug checking. For instanceTeuchos::Array::operator[] is range checked in
debug mode regardless whether there is an underling checkedSTL implementation or not
(see [9, Item 83]). In debug mode, the iterator is also runtime checked. In addition,
Teuchos::Array will automatically convert into anTeuchos::ArrayView object safely
when used in function calls and in debug mode, will catch dangling references.

• GCG 8: UseTeuchos::ArrayRCP for memory management of dynamically allocated
objects stored in contiguous arrays of data and for persisting associations involving
contiguous arrays: (see Tables 1 and 2): Note thatTeuchos::ArrayRCP does nottake the
place of a contiguous container class such asTeuchos::Array . A Teuchos::ArrayRCP
object can not change the size of the array, it can only provide for reference-counted sharing
of an array of data of fixed size and provide subviews of contiguous parts of the managed
array. All access to data (both throughTeuchos::ArrayRCP::operator[] and iterators) is
runtime checked in a debug build.

16

D
R

A
FT

• GCG 9: When raw C++ pointers must be exposed (i.e., due to interfacing with
non-compliant code), minimize the amount of code exposed tothe raw pointer: When raw
C++ pointers must be exposed to communicate with other code that uses raw C++ pointers,
encapsulate the raw C++ pointer as fast as possible and then only give up a raw pointer at the
last possible moment. For example,

SomeForeignClass* get_raw_foreign_obj_ptr();
do_some_foreign_stuff(SomeForeignClass* foreign_obj_ ptr);

void foo() {
// Get the raw pointer into a proper encapsulated class objec t right away!
Ptr<SomeForeignClass> foreignObj(get_raw_foreign_obj _ptr());

// Lots of code ...

// Only expose the raw pointer directly in the foreign functi on call!
do_some_foreign_stuff(&*foreignObj);

}

5.1.3 Object Control

• GCG 10: Accept user options at runtime through aTeuchos::ParameterList object
by deriving from theTeuchos::ParameterListAcceptor interface: The
Teuchos::ParameterList class provides many useful features that make it easy to accept
user options in a flexible and fully validated way (see Teuchos documentation for more
details). TheTeuchos::ParameterListAcceptor interface defines a consistent flexible
protocol for setting and managing a parameter list.

• GCG 11: Fully validate all parameters and sublists in accepted
Teuchos::ParameterList objects usingvalidatePamaters(...) and other
means: All user parameters and sublists passed in through a
Teuchos::ParameterListAcceptor should be fully validated. The mail tool for this is the
member functionvalidateParameters(...) . Using this function and other other
approaches, when a user mispells a parameter or sublist, uses the wrong type for a
parameter, or provides an invalid parameter value, they will get an exception thrown with a
helpful error message. Also, objects are only responsible for validating their own parameters
and sublists, and not those of other objects that they hold sublists for.

5.1.4 Object Introspection

• GCG 12: Always send output to somestd::ostream object; Never send output directly
to std::cout or std::cerr: Sending output directly tostd::cout or std::cerr
destroys the flexibility of numerical software and does not perform well in SPMD programs.
Instead, produce output using one of the following approaches.

• Prefer to print output through aTeuchos::FancyOStream object instead of through a
barestd::ostream object to more easily produce formatted output: A
Teuchos::FancyOStream class object can wrap anystd::ostream object and helps to

17

D
R

A
FT

produce structured indented output and to create more readable output in an SPMD program
(even when every processor produces output).

• Derive fromTeuchos::Describable and implement the functionsdescription()
anddescribe() to allow clients to print the current state of an object: The
Teuchos::Describable interface is the appropriate way to allow clients to print the current
state of an object in a flexible way. The verbosity of the output is controlled by an input
enum parameter.

• Derive fromTeuchos::VerboseObject and print to*this->getOStream() to
give information about what an object is doing: Clients can set the output stream and the
verbosity level through a parameter list (see theTeuchos::ParameterListAcceptor
interface described above) or can set them directly in code.If no output stream is set, then
Teuchos::VerboseObjectBase::getDefaultOStream() will be used.

• As a last resort, always prefer printing to

*Teuchos::VerboseObjectBase::getDefaultOStream() instead of
std::cout or std::cerr: The stream provided by
*Teuchos::VerboseObjectBase::getDefaultOStream() is setup by default to do clean
printing in an SPMD program and can also be setup through a
Teuchos::CommandLineProcessor object to control how output is produced and
formatted.

5.1.5 Miscellaneous coding guidelines

• GCG 13: Prefer to explicitly define template arguments in a templatefunction call to avoid
protability problems and enable implicit covnersions of input arguments: If it is not too
convenient, then preferring to explicitly define the template arguments in a template function
call can massively improve the portability of templated C++code. For example, in Thyra,
every non-member function is templated on theScalar type such as:

template<class Scalar>
sum(const VectorBase<Scalar> &x);

When portability is a concern or when implicit conversions in the input arguments are
needed, then prefer to call such functions by specifying thetemplate argument(s) as:

Scalar mySum = sum<Scalar>(myVec);

• GCG 14: Use the template functionTeuchos::as<T to>(T from) for all conversion
of data types that may result in loss of precision or in an incorrect conversion: The
templated C++ functionTeuchos::as<T to>(T from) and the class specializations that it
calls will contain runtime tests, in debug mode, for the results of a conversion to ensure
correctness. This includes the conversion of strings into numbers (i.e. replacingatof() and
atoi()) as well as conversions that can result in loss of precision or meaning (such as
double to int , long int to int , int to char , unsigned int to int , etc.). The optimized
implementations of these conversion functions are typically unchecked for speed. A version

18

D
R

A
FT

this function which always does runtime checking is also available called
Teuchos::asSafe<T to>(T from) in order to validate user data.

Justification: Unchecked conversions are the result of many different types of errors and a
fully safe program needs to be able to check all such potentially unsafe conversions at
runtime. The implicit conversion rules allowed in C which where carried over to C++ can
result in very unsafe code.

• GCG 15: Use namespace enclosure for the definition of member functions of a C++ class:
The member functions of a class should be defined in the same order as their declarations
and should generally be defined within a namespace enclosure. For example, given the
declaration of

// SomeNamespace_SomeClass.hpp

namespace SomeNamespace {

class SomeClass {
public:

void someFunc();
...

};

} // namespace SomeNamespace

the safest and one of the tersest ways to define the member functions in the source file is

// SomeNamespace_SomeClass.cpp

namespace SomeNamespace {

void SomeClass::someFunc()
{

...
}

} // namespace SomeNamespace

Justification: Using the namespace enclosure instead of ausing namespace
SomeNamesapce directive insures that you can never accidentally provide another definition
for some other class member function in another namespace. Explicit namespace
qualification is not needed since if one misspells any part ofthe prototype, then the compiler
will issue an error message.

• GCG 16: Use explicit namespace qualification for the definition of all nonmember C++
functions: For example, for the nonmember function prototype

19

D
R

A
FT

// SomeNamespace_someFunc.hpp

namespace SomeNamespace {

void someFunc(const int data);

} // namespace SomeNamespace

the safest way to define the nonmember function is

// SomeNamespace_someFunc.cpp

void Thyra::someFunc(const int data)
{

...
}

Justification: Using explicit namespace qualification avoids problems ofspelling and other
mistakes that can accidentally result in the definition of a new function [8, Section 8.2]. Such
a mistake is caught at link time but it can be very hard to figureout the root cause of the
problem when this happens.

• GCG 17: For general functions, prefer to list function arguments inthe order of input,
input/output, output, and finally optional arguments with default values: For example:

void someFunc(
const T1 &arg1, // Input
const Ptr<T2> &arg2, // Input/Output
const Ptr<T3> &arg3, // Output
const int arg4 = 0 // Optional input argument with defualt val ue
);

This ordering of arguments is only a general suggestion as a different ordering of arguments
may be chosen based on other criteria. See Section 5.2 for a description of the use of thePtr
class.

• GCG 18: For non-member object functions, list the object as the firstargument passed in a
const reference or non-const reference: For example:

void someModifyingFunc(
SomeClass &obj,
const int arg1,
...
);

void someNonModifyingFunc(

20

D
R

A
FT

const SomeClass &obj,
const int arg1,
...
);

Note that in the case ofsomeModifyingFunc(...) , the output argument is listed first
instead of after the input argument(s) which breaks typicalconvention of having input/output
arguments (which all objects that are modified are) come after input arguments. However,
this is more consistent with established convention such asin Python and other languages
where theself argument is always the first explicit (or implicit) argument. Note that this is
also a situation where a non-const reference argument makesthe most sense.

• GCG 19: Preferenums tobools as formal function arguments when conversion mistakes
are likely: While the built-in typebool is very convenient to use as a formal function
argument, it also allows for conversions from every built-in type and every pointer type.
While using an enumeration type and its values is more verbose, it is also self documenting
and is safer. For example, what does the third argument mean in the following example?

apply(A, 2.0, true, x, y);

When thebool argument is changed to an enum, the function call becomes:

apply(A, 2.0, USE_TRANSPOSE, x, y);

the meaning is much more clear. Therefore, when self documentation and compile-time
safety are important, prefer to define and useenums overbool s as formal function arguments
(see [6, Section 12.6]).

• GCG 20: Avoid overloading virtual functions: Overloaded virtual functions cause sever
portability problems with many compilers and result in shadowing warnings that are
elevated to errors in may systems.

• GCG 21: Avoid overloading functions on different smart pointer types (e.g.,RCP, Ptr,
etc.): Overloading functions on different smart pointer types, such asRCPor Ptr can create
ambiguous function calls that will not happen when using rawC++ pointers or references.

Justification: Consider the following overloaded functions:

void foo9(const RCP<A> &a);
void foo9(const RCP<const A> &a);

Now, suppose classC is derived from classA. The code fragment:

RCP<C> c(new C);
RCP<A> a = c;
foo9(a); // Okay!

succeeds in calling the firstfoo9(...) function because it is an exact match. However, the
code fragment:

21

D
R

A
FT

RCP<C> c(new C);
foo9(c); // Error!

fails to compile because the call is ambiguous. When using raw C++ pointers, the call would
not be ambiguous and would also call the non-constfoo9(...) function because the C++
compiler knows that a conversion from derived to base type isto be preferred over an
additional conversion from non-const to const. This is one example where smart pointers are
put at a disadvantage over raw C++ pointers. Therefore, never overload C++ functions on
different RCP argument types. Instead, name multiple functions such as:

void nonconstFoo9(const RCP<A> &a);
void foo9(const RCP<const A> &a);

With non-overloaded functions, the following code fragment compiles just fine:

RCP<C> c(new C);
nonconstFoo9(c); // Okay!
foo9(c); // Okay!

• GCG 22: Include only standard C++ headers<cX>, not standard C headers<X.h>, and
avoid allusing namespace std directives: Only include the C++<cX> versions of the
standard C<X.h> headers. For example, include<cmath> , <cstdlib> , and<cassert>
instead of<math.h> , <stdlib.h> , and<assert.h> . Avoid all uses ofusing namespace
std directives and instead prefer explicit namespace qualification such asstd::sqrt or
using declarations such asusing std::sqrt only within function definitions. See [8,
Section 16.1.2] for a complete list of the standard C++ versions of the standard C headers.

Justification: See Appendix C for a clarification of Item 59 in [9] dealing with the issue of
using declarations and directives.

• GCG 23: Break up templated code into four filesSomeClass decl.hpp,
SomeClass def.hpp, SomeClass.hpp, andSomeClass.cpp to support explicit
instantiation, minimize recompilation, and avoid problems in mutually dependent (i.e.
circular) code: Breaking up templated C++ into the four files
SomeClass[decl, def].[hpp,cpp] (as described below) allows for a portable and
bullet-proof solution to handing templated C++ code which allows for a) controlled explicit
or implicit template instantiation, b) minimization of recompilations, and c) handling of any
and all types of cicular dependancies in declarations and definitions (the say that are allowed
with non-templated C++ code)..

5.2 Specification of formal arguments for C++ functions (SFA)

Here we describe a convention for the specification of the formal arguments for C++ functions that
that maximizes compile-time and run-time checking, yieldsnear optimal performance, and is
highly self documenting. A key component to this specification is that no raw C++ pointers are
used. Raw pointers are the cause of almost all memory usage problems in C++. Raw C++
references, on the other hand, are safe to use as long as the object reference they are being used to

22

D
R

A
FTFigure 1. Conversions between Teuchos basic pointer types to single

objects.

Value Objects, Non-Persisting Associations
Argument Purpose Formal Argument Declaration

single, non-changeable object (required)S s or const S s or const S &s
single, non-changeable object (optional)const Ptr<const S> &s
single, changeable object (required) const Ptr<S> &s or S &s
single, changeable object (optional) const Ptr<S> &s
array of non-changeable objects const ArrayView<const S> &s
array of changeable objects const ArrayView<S> &s

Value Objects, Persisting Associations
Argument Purpose Formal Argument Declaration

single, non-changeable object const RCP<const S> &s
single, changeable object const RCP<S> &s
array of non-changeable objectsconst ArrayRCP<const S> &s
array of changeable objects const ArrayRCP<<S> &s

Table 1. C++ declarations for passing small concrete objects (i.e. with
value semantics) to and from functions whereS is a place holder for an
actual built-in or user-defined data type. By default, all objects of type
Ptr , RCP, ArrayRCP , andArrayView are assumed to be non-null unless
explicitly stated in the documentation for the function. Inother words,
documentation must be added to state that an argument is optional; the
default is that the argument is required.

23

D
R

A
FT

Figure 2. Conversions between Teuchos and standard array types.

24

D
R

A
FT

Reference Objects, Non-Persisting Associations
Argument Purpose Formal Argument Declaration

single, non-changeable object (required) const A &a
single, non-changeable object (optional) const Ptr<const A> &a
single, changeable object (required) const Ptr<A> &a or A &a
single, changeable object (optional) const Ptr<A> &a
array of non-changeable objects (const ptr) const ArrayView<const Ptr<const A> > &a
array of non-changeable objects (nonconst ptr)const ArrayView<Ptr<const A> > &a
array of changeable objects (const ptr) const ArrayView<const Ptr<A> > &a
array of changeable objects (nonconst ptr) const ArrayView<Ptr<A> > &a

Reference Objects, Persisting Associations
Argument Purpose Formal Argument Declaration

single, non-changeable object const RCP<const A> &a
single, changeable object const RCP<A> &a
array of non-changeable objects (const ptr) const ArrayView<const RCP<const A> > &a
array of non-changeable objects (nonconst ptr)const ArrayView<RCP<const A> > &a
array of changeable objects (const ptr) const ArrayView<const RCP<A> > &a
array of changeable objects (nonconst ptr) const ArrayView<RCP<A> > &a

Table 2. C++ declarations for passing abstract objects (i.e. with refer-
ence or pointer semantics) or large concrete objects (i.e. that are expen-
sive to copy) to and from functions whereA is a place holder for an actual
C++ base class. By default, all objects of typePtr , RCP, ArrayRCP , and
ArrayView are assumed to be non-null unless explicitly stated in the
documentation for the function. This includesPtr andRCPobjects em-
bedded in an array. In other words, documentation must be added to state
that an argument is optional; the default is that the argument is required.

25

D
R

A
FT

point to is valid and no persisting association exists. All of these classes perform runtime checks of
correct memory usage when debug checking is enabled at configure time (i.e., using
--enable-teuchos-debug with configure). However, in optimized builds these classes perform
no debug checking at all and yield the same performance achieved using raw C++ pointers. The
classesRCPandArrayRCP always implement reference counting in optimized and debugbuilds
and therefore impart necessary extra overhead that never goes away (unless you don’t use them).
The other classesPtr andArrayView do not use any reference counting in an optimized build and
therefore impart little extra overhead.

Tables 1 and 2 give conventions for passing single objects and arrays of objects for value-type and
reference-type objects, respectively. In this specification, the classesTeuchos::Ptr ,
Teuchos::RCP , Teuchos::ArrayRCP , andTeuchos::ArrayView are used as a means to pass
objects of another type (shown asS andA in Tables 1 and 2). This specification addresses the four
different properties that must be considered when passing an object to a function:

• Does the object use value semantics or reference semantics?

• Is the object changeable or non-changeable (i.e. const)?

• Is this establishing a persisting or non-persisting association?

• Is the object optional or required?

The first three of these properties are directly expressed inthe C++ code in all cases shown in
Tables 1 and 2. The specification for whether an argument or object is required or optional must be
documented in the function’s interface specification (i.e.in a Doxygen documentationparam
field). Here we state that, by default, an argument will be assumed to be required unless otherwise
stated. The only exception for this implicit assumption fornon-null objects isconst Ptr<const
T>& for single, non-changeable, non-persisting, objects where these always mean that the argument
is optional. If such an argument is required, it is specified as const T& .

An array of value objects is passed as contiguous storage through anArrayView<S> or
ArrayView<const S> object. An array of reference objects, however, can not be passed in
contiguous storage for the objects themselves and instead must be passed as contiguous storage of
(smart) pointers to the objects usingArrayView<const Ptr<const A> > for non-persisting
associations orArrayView<const RCP<const A> > for persisting associations. Theconst can
be removed from the eitherPtr /RCPor A depending on what is allowed to change or not change
during the function call.

Note that in the case ofRCPandArrayRCP objects, that these can be treated as output objects in
their own right. For example, passing anRCP<T>object into a function to be set to point to a
differentA object would be specified in the function prototype asconst Ptr<RCP<T> >& or
RCP<T>&depending on preference. Note that it never makes sense forPtr or ArrayView to be set
in this way since such a function call would almost always be establishing a persisting association
with the embedded objects and therefore would require (according to the standards established
here) using anRCPor ArrayRCP object.

26

D
R

A
FT

5.2.1 Variations in passing single changeable objects

The only area of contention in this specification is how to handle arguments for required single
changeable objects. The specification described here allows either passing them through a smart
pointer asconst Ptr<T>& or as a raw non-const object reference asT&. In Item 25 in [9], the
authors recommend passing a raw non-const object referenceT& for changeable required objects,
which seems very reasonable. However, other notable authors [8, Section Section 5.5] and [6,
Section 13.2] recommend passing a pointer instead, as it provides a visual clue that the object is
being modified in the function call. Of course, our specification does not allow raw pointers so we
pass aconst Ptr<T>& object instead. To consider the issues, for example, from looking at the
following function call which (if any) argument(s) is beingmodified?

someFunction(a, b, c, d);

To tell for sure, one would have to look at the function prototype:

void someFunction(const A& a, const B& b, const C& c, D& d);

to see that it is thed argument is being modified in the function call.

Now consider the convention that all changeable arguments be passed in through a pointer as
const Ptr<T>& , giving the new prototype:

void someFunction(const A& a, const B& b, const C& c,
const Ptr<D>& d);

Now the function call looks like:

someFunction(a, b, c, outArg(d));

whereoutArg(...) is a templated non-member function that returns aPtr<T> object given a raw
referenceT&. Now the client function call itself is self documenting. Also, given that this
specification states that allPtr<T> arguments are required to be non-null by default, this specifies
that passing an argument asconst Ptr<T>& has all of the same meaning by default that passing
T& does. Of course now we have given up a compile-time check for anon-null argument forT&
with a debug-only runtime check thatconst Ptr<T>& is non-null.

27

D
R

A
FT

6 Formatting of source code

At the minimum, source code should be formatted consistently within a single file or a set of
tightly coupled files [9, Item 0]. Ideally, source code should be formatted consistently enough
across a code project so as not to cause undue difficulty in shared maintenance and in performing
code reviews [6]. Some consistency in formatting helps and to facilitate multiple ownership and
shared development of a collection of software, such as in Extreme Programming (XP) [2] (see
Appendix D for an outline of the arguments for adopting a consistent code formatting style). By
“formatting” we generally refer to the use of white-space inthe line-to-line formatting of the
program or in the ordering of lines of code such that the meaning of the program to the compiler is
unchanged2 The handling of indentation styles can largely be automated3 which allows individual
developers to work with any style they would like like for files that they create but also makes it
easy for developers to edit files created by other developersand keep to their styles as well.
Appendix E gives some guidelines for how individuals shouldconduct themselves where more
than one coding formatting style is in use within a project.

Our main goal in this section is to try to provide reasonable recommendations for those formatting
issues that are largely a matter of style and personal preference but at the same time affect the
overall readability of the code and promote pair programming and joint ownership of the code [2].
The formatting and indentation guidelines presented here are largely consistent with the
recommendations in [6, Chapter 31] and try to reduce the amount of “right drift” that can occur
with some common formatting and indentation styles.

The indentation guidelines outlined below can be largely automatically supported by Emacs and
are used by the custom style “thyra” defined in the Emacs package file cc-thyra-styles.el4. Other
custom styles can also be added to this file and used as well. Any of these styles can be listed in
each source file and therefore anyone using Emacs can automatically use a particular indentation
style without having to fight the editor to manually reformatcode to abide by a foreign style.

6.1 General principles for formatting of source code (FSCP)

Some general principles of good formatting, based on the discussion in [6, Section 31.1], are:

• FSCP 1: Formatting should accurately and consistently show the logical structure of the
code: It is somewhat subjective what formatting styles “show thelogical structure” of code
but McConnell makes some good arguments for some styles overothers. However, it is up
the group of programmers to decide as a group what style items“show the logical structure”.

• FSCP 2: Formatting should improve the readability of the code for most people: There are
specific studies cited in [6, Chapter 31] that provide good evidence to prefer some styles
over others.

2While technically changing the name of a class, function or variable changes the meaning of a program, if name
changes are done in such a way as to avoid name collisions, then naming conventions also do not affect the meaning of
the program and are therefore very much related to other formatting issues such as the treatment of “white-space”.

3Emacs supports multiple file-specific formatting styles forC++ and tools like Artistic Style [4] can format source
files from the command line. A flavor of thevi editor may also support indentation styles.

4SeeTrilinos/packages/thyra/emacs/README for a description of the “thyra” Emacs style

28

D
R

A
FT

• FSCP 3: Formatted code should retain its formatting well when modified; especially for
those modifications performed by automated tools: Changing one line of code should not
require changes to other lines of code to maintain the formatting style.

• FSCP 4: Formatting style should follow the most common idiom unlessone of the above
principles are violated: When there is no good technical argument for one formattingstyle
choice over another, then the style choice that is the most common should be used5. This is
not advocated per-say in [6, Chapter 31] but it is a good idea in general to follow popular
idioms when there are several equally good choices and therefore the decision is arbitrary.
However, not selecting a single style choice can create artificial complexity in the code from
irregularity in formatting.

6.2 Specific source code formatting principles (FSC)

Below, specific recommendations are spelled out that try to conform to common practices but also
try to avoid excessive “right drift”:

• FSC 1: The formatting style in any single file or group of closely related files should be the
same: Consistent formatting includes the placement of braces, the number spaces to indent
etc.Justification: This is recommended in [9, Item 0].

• FSC 2: Try to keep all text within the first 80 character columns: Keeping most of the source
code within the first 80 character columns helps to make the code more readable and helps to
facilitate side-by-side two-column editing and comparisons of source code. Most of the style
and indentation guidelines described below help to avoid code that extends beyond the 80th
column too rapidly.Justification: “Studies show that up to ten-word text widths are optimal
for eye tracking” [9, Item 0]. Also, some developers are still stuck with 80 column wide
terminals.

• FSC 3: Indent with spaces and not tabs: The amount of spaces to use per indentation level is
up to the individual developer but an indentation of onlytwo spacesis recommended (and is
set in the ‘Emacs ‘thyra” indentation style). A study showedthat an indentation offset of
two-to-four spaces was optimal for code reading comprehension [6, Section 31.2]. Whatever
indentation amount is used, it should be consistent in at least each source and header file [9,
Item 0] (which can be enforced using a custom Emacs indentation style). Emacs by default
will put in a tab when the tab-width is equal to the number of indentation spaces. Emacs can
be told to always use spaces instead of tabs by setting:

(setq indent-tabs-mode nil)

in the indentation style (as is done in the “thyra” style). However, it is easy to support
different preferences for the amount of spaces to indent by using a user-defined indentation
style for Emacs (sorryvi users).

Justification: “Some teams legitimately choose to ban tabs ... when misused, turn indenting
into out-denting and non-denting.” [9, Item 0].

5The measure of the commonality of a particular style choice can be determined according to a local software devel-
opment community or the larger developer community.

29

D
R

A
FT

• FSC 4: Use two vertical spaces to separate class declarations, function definitions,
namespace enclosure bounds, and other such major entries ina file.

Justification: Using two black spaces is preferable to long lines with somefiller like ’-’ or
’=’ or other separators and they clearly separate the entities and are easier to maintain (see
[6, Section 31.8]).

• FSC 5: Do not indent source code inside of namespace enclosures, instead use commented
end braces: Indenting for namespace enclosures results in unnecessary, and in some cases
excessive, indentation. Instead, for example, use:

namespace MyNameSpace {

namespace MyInnerNamespace {

class SomeClass {..};

void someFunc(...) {...}

} // namespace MyInnerNamespace

} // namespace MyNameSpace

Above, note that two vertical blank lines are used between each of the major entities (see
above item).

Justification: While indentation within namespaces is helpful in small example code
fragments, it provides little help in showing namespace structure in more realistic code. The
use of commented end braces is generally sufficient to show namespace structure and will
not result in excessively indented code. In addition, typically, each file will only contain
code from one (or more nested) namespace and therefore indenting for namespaces provides
no useful information. Not indenting for namespace enclosures is also consistent with the
“ansi”, the “kr”, and the “linux” styles as defined by Artistic Style [4].

• FSC 6: C++ class declarations should generally be laid out withpublic members coming
beforeprotectedmembers coming beforeprivatemembers and indented as shown in
Figure 3.

Justification: This ordering of sections and data members is quite common [6, Section 31.8].
Above, we show private member functions after private data members since private data
members are more prominent and more common in the class implementations than are
private member functions. Also, private types (where typedefs are most common) must be
listed before they are used in the declaration of the privatedata members. Note that public
types used in public member functions must be listed above (or at least forward declared)
before the public member functions that use them.

• FSC 7: List short function prototypes on one line and longer prototypes on multiple lines,
indenting arguments one unit: Below, guidelines for formatting short function prototypes

30

D
R

A
FT

class SomeClass {

// Friends

friend void foo();

friend class SomeOtherClass;

public:

// Public types

typedef int integral_type;

// Public member functions

void func1();

protected:

// Protected member functions

void func2();

private:

// Private types

typedef std::vector<int> int_array_t;

// Private data members

int data1_;
int_array_t array1_;

// Private member functions

void func3();

};

Figure 3. Suggested layout of C++ class declaration complete with
ordering of sections, indentation, and line spacing.

31

D
R

A
FT

and long prototypes are given. These guidelines seek to produce function prototypes that are
fairly tight (i.e. not too much white-space explosion), arerobust to modifications, and keep
code inside of the 80th character column. This indentation style can (and should) also be
applied to function definitions and function calls.

– List short function prototypes on one line if possible: For example,

ReturnType someFunction(int arg = 0);

or

ReturnType someFunction(int arg=0);

or some other style for white-space within ’(...)’ but the opening ’(’ should come
directly after the function name in all cases.

– For longer prototypes, indent arguments on continuation lines one unit: Function
prototypes that can not approximately fit on a single line in the first 80 character
columns should have the function arguments listed startingon the second line with one
unit of indentation (e.g. two spaces) from the function return type and function name
line. For example, several different valid formats for a longer function prototype are:

ReturnType someFunction(
int arg1,
bool arg2,
double* arg3[],
const std::string &arg4 = ""
);

or

ReturnType someFunction(
int arg1, bool arg2, double* arg3[],
const std::string &arg4 = ""
);

or

ReturnType someFunction(
int arg1, bool arg2, double* arg3[],
const std::string &arg4 = "");

or

ReturnType someFunction(int arg1, bool arg2,
double* arg3[], const std::string &arg4 = "");

32

D
R

A
FT

As shown above, the function arguments can be listed separately on different lines, or
in groups on sets of lines. The arguments can begin on the sameline as the type +
function name line or can start on the next line. The ending parenthesis ’)’ can appear
on the same line as the last line of arguments or can appear alone on the last line. Other
formats are possible also and can be appropriate in different situations.

Justification: See [6, Section 31.1].

– Return types can be listed on same line as the function name unless the line is too long:
A function prototype’s return type should appear on the sameline as the function name
unless it is excessively long and would result in the return type + function name line to
extend past the 80th character column. When the return type +function name is too
long, then it can be listed on separate lines with no indent, for example, as:

Teuchos::RCP<ReturnType>
someVeryLongAndVeryImportantFunction(

int arg1, bool arg2, double* arg3[]
,const std::string &arg4 = ""
);

However, listing the function return type on a separate lineeven in cases of shorter
prototypes is also okay.

• FSC 8: Order the definitions of C++ entities the same as the order of the declarations of
those entities: For example, one should order the definitions of a set of member functions the
same as the ordering of the declarations in the class definition. Maintaining the ordering of
definitions and declarations makes the code more readable and more maintainable. For
example, if the function definitions are ordered the same as the declarations, it can be easy to
see if a function definition is missing (i.e. which could be the cause of the link error that you
are seeing).

• FSC 9: Use “modified K&R” or “ANSI” style for the placement of bracesand indentation
of control structures: Two basic styles of brace placement and indentation in control
structures are recommend here. The first general style is a modification of the K&R style[4]
where the brace comes immediately after the control statement on the same line shown as:

// Modified K&R Style (recommended)
if(someCondition) {

...
}
else {

...
}

Note that the pure K&R style (for example, as defined by Artistic Style [4]) shown as:

// Pure K&R Style (*NOT* recommended)
if(someCondition) {

...
} else {

...
}

33

D
R

A
FT

is not recommended. Even through pure K&R style meets McConnell’s strict pictorial
definition of “emulation of pure block style” (i.e. the equivalent to pure block format such as
in Visual Basic) which he says is good, he actually recommends the above modified K&R
style (as do we since we feel it is more readable).

The second general style that is recommended is the “ANSI” style[4] where the opening
brace begins flush on the next line from the control statementshown as:

// ANSI Style (recommended)
if(someCondition)
{

...
}
else
{

...
}

Both the modified K&R and the ANSI styles help to avoid right drift. The modified K&R
style creates tighter code vertically and seems to be preferred by many communities and
authors but variations of the ANSI style are also very common. Note that the ANSI style
seems to have a distinct advantage in cases where the controlstatement is continued over
multiple lines. For example, the modified K&R style with linecontinuations looks like:

// Modified K&R Style with line continuations (*NOT* recomm ended)
if(someLongCondition &&

anotherVeryLongCondition &&
theLongestConditionThatWillFitOnOneLine) {
// Statements
...

}

and it is hard to argue that this shows the logical structure of code. One could argue that the
ANSI style which looks like:

// ANSI Style with line continuations (recommended)
if(someLongCondition &&

anotherVeryLongCondition &&
theLongestConditionThatWillFitOnOneLine)

{
// Statements
...

}

better shows the logical structure of the code in clearly separating the control structure logic
from the inner block of code.

Note that while the modified K&R style meets McConnell’s blessing of “showing the logical
structure of code” where he refers to it as “emulating pure block” format that he cites the
ANSI styles as violating this principle [6, Section 31.1]. However, it is somewhat subjective

34

D
R

A
FT

what styles “show the logical structure” and McConnell himself seems to contradict himself
at times (see the formatting of if/else statements below).

When choosing between one of these to styles, try to be consistent at least within a single
file. However, for control statements that extend over a single line, prefer the “ANSI” style.

Below, the application of the modified K&R style and the ANSI styles are shown in the
context of several different types of C++ loop and control structures.

– Formatting if/else if/else statements: When applied to if statements, the two
recommended styles are:

// Modified K&R Style (recommended)
if(someCondition) {

...
}
else if(someOtherCondition) {

...
}
else {

...
}

and:

// ANSI Style (recommended)
if(someCondition)
{

...
}
else if(someOtherCondition)
{

...
}
else
{

...
}

– Formatting switch/case statements: The two recommended formats for switch/case
statements are:

// Modified K&R Style (recommended)
switch(someEnumValue) {

case ENUM_VALUE1:
...
break;

case ENUM_VALUE2:
...
break;

default:
TEST_FOR_EXCEPT("Should never get there!");

}

35

D
R

A
FT

and

// ANSI Style (recommended)
switch(someEnumValue)
{

case ENUM_VALUE1:
...
break;

case ENUM_VALUE2:
...
break;

default:
TEST_FOR_EXCEPT("Should never get there!");

}

As shown above, every switch structure should have adefault case that throws an
exception (see “use the default clause to detect errors” in [6, Section 15.1]).

Also, if needed, the case blocks can be wrapped in braces as:

// Modified K&R Style (recommended)
switch(someEnumValue) {

case ENUM_VALUE1: {
...
break;

}
case ENUM_VALUE2: {

...
break;

}
default: {

TEST_FOR_EXCEPT("Should never get there!");
}

}

and

// ANSI Style (recommended)
switch(someEnumValue)
{

case ENUM_VALUE1:
{

...
break;

}
case ENUM_VALUE2:
{

...
break;

}
default:
{

TEST_FOR_EXCEPT("Should never get there!");
}

36

D
R

A
FT

}

– Formatting for and while loops: The two recommended styles for formatting for loops
are:

// Modified K&R Style (recommended)
for (int i = 0; i < size; ++i) {

...
}

and:

// ANSI Style (recommended)
for (int i = 0; i < size; ++i)
{

...
}

Note that line continuations are often needed for a for loopscontrol structure,
especially if long type names or variable names are used. In these cases, the ANSI
style is recommended as:

// ANSI Style (recommended)
for (

std::vector<SomeVeryLongClassName>::const_iterator i tr = longVarName.begin();
itr != someLongVariableName.end();
++itr)

{
...

}

Similarly, while loops should be formatted as:

// Modified K&R Style (recommended)
while (someCondition) {

...
}

or:

// ANSI Style (recommended)
while (someCondition)
{

...
}

37

D
R

A
FT

7 Doxygen documentation guidelines

Here a set of reasonable guidelines is stated for writing Doxygen (and plain old) documentation for
classes, functions, etc. that makes the specification clearbut is not too verbose or hard to maintain.
Other types of higher-level documentation are also needed,such as design documents and tutorials,
but guidelines for these higher-level types of documentation are not covered here.

7.1 General principles for function and class level documentation (DOXP)

• DOXP 1: Level of documentation should vary depending on the prominence and/or the role
of the software entity or collection: Important interfaces or widely disseminated concrete
classes or functions require an appropriate level of precise documentation. Concrete
implementations that are less widely disseminated can provide less (or none in some cases)
Doxygen documentation if the implementation code itself issufficiently easy to understand.
However, major parts of an implementation should have at least some plain old (i.e.
non-Doxygen) documentation to describe the basics of what is going on.

• DOXP 2: Important abstract interfaces must be fully specified independent of any single
concrete implementation: In the case of important abstract interfaces, the full specification of
behavior for the compliant objects (i.e. invariants, preconditions, post-conditions) must be
clearly stated [9, Item 69]. In some cases, this must be done completely within the Doxygen
documentation for the interface. In other cases, a standardunit testing function or class can
be used to help specify the behavior of the interface. In fact, compiled and verified unit
testing code may be superior to standard Doxygen documentation since it can not be ignored
or become invalid. On the other hand, it may be difficult for readers to wade through unit
testing code to find the specification of behavior and therefore both Doxygen documentation
and unit testing code should be used to provide the fullest benefit. Also, Doxygen
documentation can automatically include bits and pieces ofcompiled and tested code using
the\dontinclude Doxygen commands.

• DOXP 3: Behavior of ”user level” interfaces must be completely specified by the Doxygen
documentation and/or higher-level documentation: This item is an amendment to the above
item as a special case for “user” interfaces. A ”user” could be someone that simply writes
client code to the interface or one that provides implementations of the interface or both.
User’s should not be expected to study unit testing code to figure out the preconditions
and/or post-conditions for a function call.

• DOXP 4: Wrong documentation is (almost) worse than no documentation at all:
Documentation must be maintained as code is changed and therefore excessive or
unnecessary documentation degrades the quality of code. However, documentation with
small errors is generally better than no documentation at all.

• DOXP 5: The same documentation should not be repeated in more than one place if
possible: We should strive for a single source for documentation for an entity and not repeat
the same documentation over and over again. This is criticalto insure that the
documentation can be successfully maintained.

• DOXP 6: The documentation should maintain itself as much as possible and be testable as
much as possible: Any significant fragments of code that are shown in the

38

D
R

A
FT

Doxygen-generated HTML documentation should come from compiled and tested code.
This can be accomplished by using the\dontinclude Doxygen command to read in code
fragments automatically. In this way, the compiler and our test suite can be used to help
verify the code fragments in our Doxygen documentation.

7.2 Specific Doxygen documentation principles (DOX)

Now that some of the general goals for our Doxygen documentation have been presented, more
detailed guidelines are given below:

• DOX 1: Write Doxygen documentation directly in header files with documented entities:
Writing Doxygen documentation comments directly attachedto the classes, functions and
other entities helps make the documentation as tightly tiedto the code as possible (see “Keep
comments close to the code they describe” in [6, Section 32.5]). This has the unfortunate
side-effect of requiring complete recompilations whenever documentation is modified but
the overall benefit is usually worth the disadvantages. Notethat the Doxygen documentation
can be stripped out of Doxygen-generated hyper-linked versions of the code, leaving clean
C++ code without the clutter of detailed documentation. Therefore, developers should
browse Doxygen-generated source code instead of the sourcecode directly when looking at
the code and performing code reviews.

• DOX 2: Use a centralized set of definitions for common arguments when possible: Use clear
and consistent naming of arguments in multiple functions (within the same class and across
as many classes and functions as makes sense) and provide a centralized definition of these
arguments if possible to avoid repeating detailed definitions in each individual function’s
documentation. This helps to avoid duplicate documentation that is likely not to be
maintained correctly. In the case of classes, this means providing some common definitions
in the main “detailed” documentation section for the class.In the case of nonmember
functions, this might involve a common Doxygen group or module (i.e. using the\defgroup
command) for the set of functions. In the case of collectionsof nonmember functions, it may
be difficult to expect readers to find the common definitions, but links to the common
documentation are possible using a variety of approaches.

• DOX 3: Provide typical preconditions/post-conditions along with the documentation for
common arguments when possible: For common arguments that are shared among many
functions, define the most common preconditions for them in acentral place and avoid
listing them on a function-by-function basis unless they change for an individual function.
For a C++ class, place descriptions for these common arguments in the main class
documentation under a\section named “Common Function Arguments and
Pre/Post-Conditions”. Only include preconditions for these arguments in specific function
documentation sections if it is different from the most common preconditions.

• DOX 4: Add a\brief description for every entity that should be seen by the user: The
\brief field is used to provide the short one-line documentation string that is included in the
function summary section of classes, groups, namespaces etc. Even if no text documentation
is needed/wanted, add an empty

/** \brief . */
void someFunction();

39

D
R

A
FT

comment so that Doxygen will include the class, function, orother entity in the HTML
documentation. Note that this is important when the Doxygenconfiguration option
EXTRACTALL is set toNO.

• DOX 5: Add a\param field for all of the arguments or none of the the arguments in a
function; do not define partial\param field lists: All arguments should be listed in\param
fields with at least the [in], [out], or [in/out] specifications and these should have at least a
very short description. Or, if the function arguments are clear and trivial (and/or have
already been defined in the common documentation section), then no\param fields should
be included at all. If any of the arguments in a function’s documentation are listed in\param
fields then all arguments should be listed in\param fields.

• DOX 6: Only add a\returns field if necessary: Don’t add a\returns description of the
return value if it is already clearly specified in the\brief description of the function.
However, if the nature of the return value is at all complex, then include a\returns field to
describe it. When referring to the return argument, refer toit as returnVal . By consistently
using the identifierreturnVal for the return value, user’s will immediately know what this
is referring to.

• DOX 7: Prefer specifying post-conditions for output arguments intheir \param field;
otherwise specify their post-conditions in the ’Post-conditions’ list: The post-conditions for
output arguments can be listed directly in the\param field for the argument if they only
involve just that argument in a fairly simple way. Otherwise, if the post-conditions are more
complex or involve multiple arguments in order to specify, then they can be listed in the
Post-conditions list. It may be difficult to objectively determine the best place to list the
post-conditions for an output argument.

• DOX 8: Order the documentation fields in function documentation as\brief, \param,
Preconditions, Post-conditions, then\returns; omitting those that do not apply: A
consistent ordering of sections of documentation within a function makes it easier for
readers to find what they are looking for.

• DOX 9: If possible, try to use\relates to associate nonmember functions with a single
class: If a nonmember function is most closely related to a single class, use the\relates
field to cause the documentation for the function to be listedwith the classes documentation.
This makes it easier for readers to find out everything that they can do with a class object (or
set of class objects) just by looking at a single HTML page anda single summary list of
functions (which includes member and nonmember related functions).

• DOX 10: Provide detailed documentation for only the initial declaration of a virtual
function: Only provide detailed documentation of the initial declaration of a virtual function
in the class where it is first defined asvirtual . In general, documentation should not be
included for the overrides of virtual functions in derived classes. Doxygen automatically
puts in a link to the original virtual function in the base class so readers are just one click
away for seeing the detailed documentation. Always add an empty

/** \brief . */
void someFunction();

comment for every class and every function that should be included in the HTML
documentation but where no text documentation is wanted or needed.

40

D
R

A
FT

• DOX 11: Aggregate the overrides of virtual functions into groups according their base
class: For example, the overrides of the virtual functions for the
Teuchos::ParameterListAcceptor interface would look like:

class SomeClass : public Teuchos::ParameterListAcceptor {
public:

...

/** \name Overriden from Teuchos::ParameterListAccpetor */
//@{

/** \brief . */
void setParameterList(

Teuchos::RCP<Teuchos::ParameterList> const& paramList);
/** \brief . */
Teuchos::RCP<Teuchos::ParameterList> getParameterLis t();
/** \brief . */
Teuchos::RCP<Teuchos::ParameterList> unsetParameterL ist();
/** \brief . */
Teuchos::RCP<const Teuchos::ParameterList> getParamet erList() const;
/** \brief . */
Teuchos::RCP<const Teuchos::ParameterList> getValidPa rameters() const;

//@}

...

};

• DOX 12: Example source code used in Doxygen-generated and other forms of
documentation should be extracted automatically from codethat is compiled and tested
nightly: Any significant fragment of example code that is shown in Doxygen HTML
documentation or a latex document needs to come from compiled and tested code that can be
updated automatically. These C++ code fragments can be selectively inserted automatically
into Doxygen documentation using the\dontinclude Doxygen command.

• DOX 13: Sample output should be generated automatically from compiled and tested code:
Sample output included in Doxygen documentation should be generated automatically by
the test harness code and should be written to files that are included in the source directory.
The sample output in these files can then be inserted into the Doxygen HTML
documentation automatically using the\verbinclude Doxygen command. Similar
approaches can also be used for latex documentation.

41

D
R

A
FT

References

[1] R. A. Bartlett. Teuchos::RefCountPtr : An introductionto the Trilinos smart reference-counted
pointer class for (almost) automatic dynamic memory management in C++. Technical report
SAND04-3268, Sandia National Laboratories, Albuquerque,New Mexico 87185 and
Livermore, California 94550, 2004.

[2] Kent Beck.Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, 2000.

[3] Kent Beck and Cynthia Andres.Extreme Programming Explained: Embrace Change (2nd
Edition). Addison-Wesley Professional, 2004.

[4] T. Davidson and J. Pattee. Artistic style 1.20.http://astyle.sourceforge.net .

[5] Lockheed Martin. Joint strike fighter air vehicle c++ coding standards for the system
development and demonstration program. Technical report 2RDU00001 Rev C, Lockheed
Martin Corporation, 2005.

[6] S. McConnell.Code Complete: Second Edition. Microsoft Press, 2004.

[7] S. Meyers.Effective C++: Third Edition. Addison Wesley, 2005.

[8] B. Stroustrup.The C++ Programming Language, special edition. Addison-Wesley, New
York, 1997.

[9] H. Sutter and A. Alexandrescu.C++ Coding Standards: 101 Rules, Guidelines and Best
Practices. Addison Wesley, 2005.

42

D
R

A
FT

A Summary of guidelines

• NC (Naming conventions)

– NC 1: Capitalize C++ class and struct names asSomeClass.

– NC 2: Capitalize C++ namespace names asMyNameSpace.

– NC 3: C++ enum type names should begin withE asEMyEnum and enum values
should use all caps and scope context asMY ENUM VALUE.

– NC 4: C++ object instance identifier names should begin with a lower-case letter as
objectName.

– NC 5: C++ class/struct data member names should begin with a lower-case letter and
end with an underscore assomeDataMember .

– NC 6: C++ function names should begin with a lower-case letter as
someFunction(...).

– NC 7: Name C++ pure abstract base classesBlobBase, default implementation
basesBlobDefaultBase, and default concrete implementation classes
DefaultTypeABlob.

– NC 8: Prefer to name const and non-const access functions asgetPart() and
getNonconstPart(), respectively.

• NOSF (Naming and organization of source files)

– NOSF 1: Use file extension names*.hpp (C++ header),*.cpp (C++ source),*.h
(C header), and*.c (C source).

– NOSF 2: Only one major C++ class with supporting code per header and source file
with name(s)NameSpaceA InnerNamespace SomeClass.[hpp,cpp].

– NOSF 3: Use internal include guards in all header files.

• GCG (General coding guidelines)

– Error handling

∗ GCG 1: UseTEST FOR EXCEPTION(...),TEUCHOS ASSERT(...) and
related macros for reporting all errors, even developer programming errors.

– Memory management

∗ GCG 2: Avoid the use of raw C++ pointers in all but the lowest-level code.

∗ GCG 3: Prefer to usestd::string instead ofchar* or const char*
∗ GCG 4: UseTeuchos::Ptr as function arguments in the place of raw C++

pointers to single objects where no persisting associationexists.

∗ GCG 5: UseTeuchos::RCP for memory management of single dynamically
allocated objects and for handling persisting [1] associations.

∗ GCG 6: UseTeuchos::ArrayView as function arguments in the place of
pointers into raw arrays or other container classes where nopersisting
association exists and the array does not need to be resized.

43

D
R

A
FT

∗ GCG 7: PreferTeuchos::Array to std::vector as a contiguous general
purpose data container.

∗ GCG 8: UseTeuchos::ArrayRCP for memory management of dynamically
allocated objects stored in contiguous arrays of data and for persisting
associations involving contiguous arrays.

∗ GCG 9: When raw C++ pointers must be exposed (i.e., due to interfacing with
non-compliant code), minimize the amount of code exposed tothe raw pointer.

– Object Control

∗ GCG 10: Accept user options at runtime through a
Teuchos::ParameterList object by deriving from the
Teuchos::ParameterListAcceptor interface.

∗ GCG 11: Fully validate all parameters and sublists in accepted
Teuchos::ParameterList objects usingvalidatePamaters(...)
and other means.

– Object Introspection

∗ GCG 12: Always send output to somestd::ostream object; Never send
output directly tostd::cout or std::cerr.

∗ Prefer to print output through aTeuchos::FancyOStream object instead of
through a barestd::ostream object to more easily produce formatted output.

∗ Derive fromTeuchos::Describable and implement the functions
description() anddescribe() to allow clients to print the current state
of an object.

∗ Derive fromTeuchos::VerboseObject and print to

*this->getOStream() to give information about what an object is doing.

∗ As a last resort, always prefer printing to

*Teuchos::VerboseObjectBase::getDefaultOStream() instead of
std::cout or std::cerr.

– Miscellaneous coding guidelines

∗ GCG 13: Prefer to explicitly define template arguments in a templatefunction call
to avoid protability problems and enable implicit covnersions of input arguments.

∗ GCG 14: Use the template functionTeuchos::as<T to>(T from) for all
conversion of data types that may result in loss of precisionor in an incorrect
conversion.

∗ GCG 15: Use namespace enclosure for the definition of member functions of a
C++ class.

∗ GCG 16: Use explicit namespace qualification for the definition of all nonmember
C++ functions.

∗ GCG 17: For general functions, prefer to list function arguments inthe order of
input, input/output, output, and finally optional arguments with default values.

∗ GCG 18: For non-member object functions, list the object as the firstargument
passed in a const reference or non-const reference.

∗ GCG 19: Preferenums tobools as formal function arguments when conversion
mistakes are likely.

∗ GCG 20: Avoid overloading virtual functions.

44

D
R

A
FT

∗ GCG 21: Avoid overloading functions on different smart pointer types (e.g.,RCP,
Ptr, etc.).

∗ GCG 22: Include only standard C++ headers<cX>, not standard C headers
<X.h>, and avoid allusing namespace std directives.

∗ GCG 23: Break up templated code into four filesSomeClass decl.hpp,
SomeClass def.hpp, SomeClass.hpp, andSomeClass.cpp to support
explicit instantiation, minimize recompilation, and avoid problems in mutually
dependent (i.e. circular) code.

• Specification of formal arguments for C++ functions

45

D
R

A
FT

Value Objects, Non-Persisting Associations
Argument Purpose Formal Argument Declaration

single, non-changeable object (required)S s or const S s or const S &s
single, non-changeable object (optional)const Ptr<const S> &s
single, changeable object (required) const Ptr<S> &s or S &s
single, changeable object (optional) const Ptr<S> &s
array of non-changeable objects const ArrayView<const S> &s
array of changeable objects const ArrayView<S> &s

Value Objects, Persisting Associations
Argument Purpose Formal Argument Declaration

single, non-changeable object const RCP<const S> &s
single, changeable object const RCP<S> &s
array of non-changeable objectsconst ArrayRCP<const S> &s
array of changeable objects const ArrayRCP<<S> &s

Reference Objects, Non-Persisting Associations
Argument Purpose Formal Argument Declaration

single, non-changeable object (required) const A &a
single, non-changeable object (optional) const Ptr<const A> &a
single, changeable object (required) const Ptr<A> &a or A &a
single, changeable object (optional) const Ptr<A> &a
array of non-changeable objects (const ptr) const ArrayView<const Ptr<const A> > &a
array of non-changeable objects (nonconst ptr)const ArrayView<Ptr<const A> > &a
array of changeable objects (const ptr) const ArrayView<const Ptr<A> > &a
array of changeable objects (nonconst ptr) const ArrayView<Ptr<A> > &a

Reference Objects, Persisting Associations
Argument Purpose Formal Argument Declaration

single, non-changeable object const RCP<const A> &a
single, changeable object const RCP<A> &a
array of non-changeable objects (const ptr) const ArrayView<const RCP<const A> > &a
array of non-changeable objects (nonconst ptr)const ArrayView<RCP<const A> > &a
array of changeable objects (const ptr) const ArrayView<const RCP<A> > &a
array of changeable objects (nonconst ptr) const ArrayView<RCP<A> > &a

46

D
R

A
FT

• FSCP(General principles for formatting of source code)

– FSCP 1: Formatting should accurately and consistently show the logical structure of
the code.

– FSCP 2: Formatting should improve the readability of the code for most people.

– FSCP 3: Formatted code should retain its formatting well when modified; especially
for those modifications performed by automated tools.

– FSCP 4: Formatting style should follow the most common idiom unlessone of the
above principles are violated.

• FSC (Specific source code formatting principles)

– FSC 1: The formatting style in any single file or group of closely related files should be
the same.

– FSC 2: Try to keep all text within the first 80 character columns.

– FSC 3: Indent with spaces and not tabs.

– FSC 4: Use two vertical spaces to separate class declarations, function definitions,
namespace enclosure bounds, and other such major entries ina file.

– FSC 5: Do not indent source code inside of namespace enclosures, instead use
commented end braces.

– FSC 6: C++ class declarations should generally be laid out withpublic members
coming beforeprotectedmembers coming beforeprivatemembers and indented
as shown in Figure 3.

– FSC 7: List short function prototypes on one line and longer prototypes on multiple
lines, indenting arguments one unit.

∗ List short function prototypes on one line if possible.

∗ For longer prototypes, indent arguments on continuation lines one unit.

∗ Return types can be listed on same line as the function name unless the line is too
long.

– FSC 8: Order the definitions of C++ entities the same as the order of the declarations
of those entities.

– FSC 9: Use “modified K&R” or “ANSI” style for the placement of bracesand
indentation of control structures.

• DOXP (Goals for function and class level documentation)

– DOXP 1: Level of documentation should vary depending on the prominence and/or the
role of the software entity or collection.

– DOXP 2: Important abstract interfaces must be fully specified independent of any
single concrete implementation.

– DOXP 3: Behavior of ”user level” interfaces must be completely specified by the
Doxygen documentation and/or higher-level documentation.

– DOXP 4: Wrong documentation is (almost) worse than no documentation at all.

47

D
R

A
FT

– DOXP 5: The same documentation should not be repeated in more than one place if
possible.

– DOXP 6: The documentation should maintain itself as much as possible and be
testable as much as possible.

• DOX (General Doxygen documentation principles)

– DOX 1: Write Doxygen documentation directly in header files with documented
entities.

– DOX 2: Use a centralized set of definitions for common arguments when possible.

– DOX 3: Provide typical preconditions/post-conditions along with the documentation
for common arguments when possible.

– DOX 4: Add a\brief description for every entity that should be seen by the user.

– DOX 5: Add a\param field for all of the arguments or none of the the arguments in a
function; do not define partial\param field lists.

– DOX 6: Only add a\returns field if necessary.

– DOX 7: Prefer specifying post-conditions for output arguments intheir \param field;
otherwise specify their post-conditions in the ’Post-conditions’ list.

– DOX 8: Order the documentation fields in function documentation as\brief,
\param, Preconditions, Post-conditions, then\returns; omitting those that do not
apply.

– DOX 9: If possible, try to use\relates to associate nonmember functions with a
single class.

– DOX 10: Provide detailed documentation for only the initial declaration of a virtual
function.

– DOX 11: Aggregate the overrides of virtual functions into groups according their base
class.

– DOX 12: Example source code used in Doxygen-generated and other forms of
documentation should be extracted automatically from codethat is compiled and tested
nightly.

– DOX 13: Sample output should be generated automatically from compiled and tested
code.

48

D
R

A
FT

B Summary of “C++ Coding Standards” (CPPCS) with amendments

Below, the 101 items in “C++ Coding Standards” by Sutter and Alexandrescu [9] are listed along
with items that are amended or invalidated in the Thyra coding guidelines. General amendments
that apply to all items are:

• Replacetr1::shared ptr with Teuchos::RCP

• Replacestd::vector with Teuchos::Array

• Replaceassert(someTest) with TEUCHOSASSERT(someTest)

Organizational and Policy Issues:

Item 0 : Don’t sweat the small stuff. (Or: Know what not to standardize.)

[Amended, see Section 6 and Appendix D]

Item 1 : Compile cleanly at high warning levels

Item 2 : Use an automated build system.

Item 3 : Use a version control system.

Item 4 : Invest in code reviews

Design Style :

Item 5 : Give one entity one cohesive responsibility.

Item 6 : Correctness, simplicity, and clarity come first.

Item 7 : Know when and how to code for scalability.

Item 8 : Don’t optimize prematurely.

Item 9 : Don’t pessimize prematurely.

Item 10 : Minimize global and shared data.

Item 11 : Hide information.

Item 12 : Know when and how to code for concurrency.

Item 13 : Ensure resources are owned by objects. Use explicit RAII and smart pointers.

Coding Style :

Item 14 : Prefer compile- and link-time errors to run-time errors.

Item 15 : Use const proactively.

Item 16 : Avoid macros.

Item 17 : Avoid magic numbers.

Item 18 : Declare variables as locally as possible.

Item 19 : Always initialize variables.

Item 20 : Avoid long functions. Avoid deep nesting.

49

D
R

A
FT

Item 21 : Avoid initialization dependencies across compilation units.

Item 22 : Minimize definitional dependencies. Avoid cyclic dependencies.

Item 23 : Make header files self-sufficient.

Item 24 : Always write internal #include guards. Never write external #include guards

Functions and Operators :

Item 25 : Take parameters appropriately by value, (smart) pointer,or reference.

[Amendedby Section 5.2]

Item 26 : Preserve natural semantics for overloaded operators.

Item 27 : Prefer the canonical forms of arithmetic and assignment operators.

Item 28 : Prefer the canonical form of ++ and –. Prefer calling the prefix forms.

Item 29 : Consider overloading to avoid implicit type conversions.

Item 30 : Avoid overloading ’&&’, ’ ||’, or ’,’ (comma).

Item 31 : Don’t write code that depends on the order of evaluation of function arguments.

Class Design and Inheritance:

Item 32 : Be clear what kind of class you’re writing.

Item 33 : Prefer minimal classes to monolithic classes.

Item 34 : Prefer composition to inheritance.

Item 35 : Avoid inheriting from classes that were not designed to be base classes.

Item 36 : Prefer providing abstract interfaces.

Item 37 : Public inheritance is substitutability. Inherit, not to reuse, but to be reused.

Item 38 : Practice safe overriding.

Item 39 : Consider making virtual functions nonpublic, and public functions nonvirtual.

Item 40 : Avoid providing implicit conversions.

Item 41 : Make data members private, except in behaviorless aggregates (C-style structs).

Item 42 : Don’t give away your internals.

Item 43 : Pimpl judiciously.

Item 44 : Prefer writing nonmember nonfriend functions.

Item 45 : Always provide new and delete together.

Item 46 : If you provide any class-specific new, provide all of the standard forms (plain,
in-place, and nothrow).

Construction, Destruction, and Copying :

Item 47 : Define and initialize member variables in the same order.

Item 48 : Prefer initialization to assignment in constructors.

Item 49 : Avoid calling virtual functions in constructors and destructors.

Item 50 : Make base class destructors public and virtual, or protected and nonvirtual.

50

D
R

A
FT

Item 51 : Destructors, deallocation, and swap never fail.

Item 52 : Copy and destroy consistently.

Item 53 : Explicitly enable or disable copying.

Item 54 : Avoid slicing. Consider Clone instead of copying in base classes.

Item 55 : Prefer the canonical form of assignment.

Item 56 : Whenever it makes sense, provide a no-fail swap (and provide it correctly).

Namespaces and Modules:

Item 57 : Keep a type and its nonmember function interface in the samenamespace.

Item 58 : Keep types and functions in separate namespaces unless they are specifically
intended to work together.

Item 59 : Don’t write namespace usings in a header file or before an #include.

[Amended, see Appendix C]

Item 60 : Avoid allocating and deallocating memory in different modules.

[Invalidated, see Appendix C]

Item 61 : Don’t define entities with linkage in a header file.

Item 62 : Don’t allow exceptions to propagate across module boundaries.

[Invalidated, see Appendix C]

Item 63 : Use sufficiently portable types in a module’s interface.

[Invalidated, see Appendix C]

Templates and Genericity :

Item 64 : Blend static and dynamic polymorphism judiciously.

Item 65 : Customize intentionally and explicitly.

Item 66 : Don’t specialize function templates.

Item 67 : Don’t write unintentionally nongeneric code.

Error Handling and Exceptions :

Item 68 : Assert liberally to document internal assumptions and invariants

Item 69 : Establish a rational error handling policy, and follow it strictly.

Item 70 : Distinguish between errors and non-errors.

Item 71 : Design and write error-safe code.

Item 72 : Prefer to use exceptions to report errors.

Item 73 : Throw by value, catch by reference.

Item 74 : Report, handle, and translate errors appropriately.

Item 75 : Avoid exception specifications.

STL: Containers :

Item 76 : Use vector by default. Otherwise, choose an appropriate container.

51

D
R

A
FT

Item 77 : Use vector and string instead of arrays.

Item 78 : Use vector (andstring::c str) to exchange data with non-C++ APIs.

Item 79 : Store only values and smart pointers in containers.

Item 80 : Preferpush back to other ways of expanding a sequence.

Item 81 : Prefer range operations to single-element operations.

Item 82 : Use the accepted idioms to really shrink capacity and really erase elements.

STL: Algorithms :

Item 83 : Use a checked STL implementation.

[Amended, With GCC, configure Trilinos with--enable-gcc-checkedstl]

Item 84 : Prefer algorithm calls to handwritten loops.

Item 85 : Use the right STL search algorithm.

Item 86 : Use the right STL sort algorithm.

Item 87 : Make predicates pure functions.

Item 88 : Prefer function objects over functions as algorithm and comparer arguments.

Item 89 : Write function objects correctly.

Type Safety :

Item 90 : Avoid type switching; prefer polymorphism.

Item 91 : Rely on types, not on representations.

Item 92 : Avoid usingreinterpret cast .

Item 93 : Avoid usingstatic cast on pointers.

Item 94 : Avoid casting away const.

Item 95 : Don’t use C-style casts.

Item 96 : Don’t memcpy or memcmp non-PODs.

Item 97 : Don’t use unions to reinterpret representation.

Item 98 : Don’t use varargs (ellipsis).

Item 99 : Don’t use invalid objects. Don’t use unsafe functions.

Item 100 : Don’t treat arrays polymorphically.

52

D
R

A
FT

C Miscellaneous amendments to “C++ Coding Standards”

In this appendix, we provide amendments mentioned in Appendix B to some of the items in [9]
that we feel are inappropriate for our domain.

C.1 Amendments to items related to compiler/linker incompatibilities

There are three items in [9] that relate to portability problems associated with mixing and matching
code in different binary libraries compiled with differentC++ compilers or with different compiler
options. In this context, the authors use the term “module” to mean a single library or a set of
libraries containing binary object code that defines the “module”.

In general, one can not assume that object code compiled by two or more different C++ compilers
will work together since the name-mangling needed for type-safe linkage is not even specified by
the ISO C++ standard. A more typical problem is when the same compiler is used, but different
compiler and/or linker options are used. For example, some compilers allow you to turn support for
exception handling on and off and if an exception is thrown byone module it will not be handled
correctly by another module that has exception handling support turned off. A similar problem can
happen when mixing static and shared libraries, in Linux forexample, where RTTI is handled
differently and can result in dynamic casting failures in cases where it would otherwise succeed.

In our model of software deployment, we distribute source code and a build process that users can
manipulate in order to set the exact compiler and linker options to match what is used by other
libraries and the application code that uses the libraries.Because we develop class libraries, it is
simply not realistic to isolate this type of code into libraries with small “Facade”type interfaces.

The specific items that we consider inappropriate are:

• Item 60: Avoid allocating and deallocating memory in different modules:

• Item 62: Don’t allow exceptions to propagate across module boundaries:

• Item 63: Use sufficiently portable types in a module’s interface:

All three of these items are related to the problem of mixing code created by different compiler
and/or linker options. However, they may also be related to mixed language programming. For
example, in order to ensure that your module is the most reusable, you might create a C-compatible
interface that allows clients coding in C (and even Fortran 77 in some cases) to call and be called
by your module. If mixed language programming is the issue, then a specialextern ‘"C"
interface should be created for the module which will automatically satisfy Items 60, 62, and 63.

C.2 Amendments for ’using’ declarations and directives

In [9, Item 59], the authors say to never put ’using’ declarations into header files or before
#include s and that ’using namespace SomeNamespace’ directives are perfectly safe for code in
source files after all#include s. However, we will argue that:

53

D
R

A
FT

• employingusing declarations to inject names of C++ classes or enums from onenamespace
into another is fairly safe (this is more lax than what is suggested in [9, Item 59])

• employing ausing namespace ... directive in any context is harmful and should be
avoided (this is more strict than what is suggested in [9, Item 59]).

However, we agree that employingusing declarations for nonmember functions is dangerous and
is to be avoided because of problems related to overloading and when overload are declared.

Are all using declarations employed in header files dangerous? In [9, Item 59], the authors clearly
show that employing ’using’ declarations for nonmember functions is dangerous because of
overloading. But what about employing ’using’ declarations for C++ classes?

To investigate the issues involved, consider the followingtoy C++ program (in the file
NamespaceClassUsingIssues.cpp):

//
// Header-like declarations
//

#include <iostream>

namespace NamespaceA {

template<class T>
class A {
public:

explicit A(const T& a) : a_(a) {}
void print(std::ostream &os) const

{ os << "\na="<<a_<<"\n"; }
private:

T a_;
};

} // namespace NamespaceA

// Add a using declaration to inject ’A’ into another namespa ce
namespace NamespaceB {

using NamespaceA::A;

} // namespace NamespaceB

// Now use the A class without the namespace qualification
namespace NamespaceB {

A<double> foo(std::ostream &os, const A<int> &aa);
// NOTE: Above, we do not need namespace qualification for ’A ’

} // namespace NamespaceB

54

D
R

A
FT

//
// Implementations
//

// Create another A class in the global namespace. With care, we should not
// have any problems with this and our code should not be affec ted by the
// presence of this class.
template<class T>
class A {
public:

explicit A(const T& a) : a_(a)
{ std::cerr << "\nOh no, called ::A::A(...)!\n"; exit(1); }

void print(std::ostream &os) { os << "\na="<<a_<<"\n"; }
private:

T a_;
};

// See what happens when you define another class A in Namespa ceB which
// conflicts with the using declaration! This should not be a llowed and
// should be caught by the compiler!

#ifdef SHOW_DUPLICATE_CLASS_A

namespace NamespaceB {

template<class T>
class A {
public:

explicit A(const T& a) : a_(a)
{ std::cerr << "\nOh no, called ::A::A(...)!\n"; exit(1); }

void print(std::ostream &os) { os << "\na="<<a_<<"\n"; }
private:

T a_;
};

} // namespace NamespaceB

#endif // SHOW_DUPLICATE_CLASS_A

// Define function in NamespaceB without namespace qualifi cation for class A
NamespaceB::A<double>
NamespaceB::foo(std::ostream &os, const A<int> &aa)
{

A<double> ab(2.0);
aa.print(std::cout);
ab.print(std::cout);
return ab;

}
// NOTE: Above, we need explicit namespace qualification fo r the return type
// ’NamespaceB::A<double>’ since we use namespace qualifi cation to define
// nonmember functions (see Thyra coding guidelines). With out this namespace
// qualification, the global class ’::A’ would be assumed an d you would get a
// compilation error. However, within the function, which i s in the scope of

55

D
R

A
FT

// NamespaceB, we don’t need namespace qualifications!

//
// User’s code. This code does not typically live in a namespa ce (or is in
// another unrelated namespace). Here, some explicit names pace qualification
// and using declarations will be required to avoid ambiguit ies.
//

int main()
{

#if defined(SHOW_MISSING_USING_DECL)
// Here, no using declaration is provided. This will result i n the global
// class ’::A’ being used below which will result in a compile r error when
// the NamespaceB::foo(...) function is called. This is a fe ature!

#elif defined(SHOW_ERRONEOUS_USING_DIRECTIVE)
// Here we try to just inject all of the names from NamespaceA i nto the
// local scope. However, this will result in the names ’Names paceA::A’ and
// ’::A’ being equally visible which will result in a compile r error when
// the first unqualified ’A’ object is created below!
using namespace NamespaceA;

#else
// Inject the class name ’A’ into the local scope and will over ride any
// (sloppy) names polluting the global namespace. This will cause the global
// ’::A’ class to be sort of hidden (which is good!).
using NamespaceA::A;

#endif

A<int> aa(5);
A<double> ab = NamespaceB::foo(std::cout,aa);
ab.print(std::cout);

return 0;

}

The above program defines a templated classA in namespaceNamespaceA and then does ausing
NamespaceA::A to inject this class name intoNamespaceB.

When the program is compiled and run, one gets:

$ g++ -ansi -pedantic -Wall -o NamespaceClassUsingIssues. exe
NamespaceClassUsingIssues.cpp

$./NamespaceClassUsingIssues.exe

a=5

a=2

a=2

56

D
R

A
FT

This program has a few different ifdefs to show different types of errors that a compiler will detect.

1. What happens if you try to define another class A in namespace NamespaceB ?

In the case of nonmember functions, overloads of a function exhibit strange and non-intuitive
behavior when one employs ’using’ declarations. However, what happens with classes?

In the above program, when ones defines the macroSHOWDUPLICATE CLASS A when
compiling, one will get:

$ g++ -ansi -pedantic -Wall -DSHOW_DUPLICATE_CLASS_A \
-o NamespaceClassUsingIssues.exe NamespaceClassUsingI ssues.cpp

NamespaceClassUsingIssues.cpp:63: error: declaration o f ‘class
NamespaceA::A<T>’ in ‘NamespaceB’ which does not enclose ‘ NamespaceA’

NamespaceClassUsingIssues.cpp:63: confused by earlier e rrors, bailing out

Above, the error message generated by g++ is not very good butat least the compiler will
not allow this code to compile. This is in stark contrast to what happens when you have
overloaded member functions which [9, Item 59] complains about.

Takehome Message: Employingusing SomeNamespace::SomeClass declarations to
inject names from one namespace into another seems to be safeand does not suffer from the
gotchas associated withusing declarations for (overloaded) nonmember functions.

2. What happens when the user’s code does not have an appropriate using declaration?

While theusing NamespaceA::A declaration inNamespaceB allows the code in
NamespaceB to avoid having to explicitly qualifyNamespaceA::A all the time, this does not
automatically mean that user code that does not live inNamespaceB will not have to do
something to get at the nameA. The user can either do explicit qualificationNamespace::A
or can put ausing NamespaceA::A declaration at the top of their namespace or in each
function that they have (as is done in themain() function above).

In the above program, if you define the macroSHOWMISSING USING DECL, theusing
Namespace::A declaration will be missing inmain() and this will result in the compiler
finding the global::A class which will cause a compiler error when
NamespaceB::foo(...) gets called. Here is what one gets when compiling:

$ g++ -ansi -pedantic -Wall -DSHOW_MISSING_USING_DECL \
-o NamespaceClassUsingIssues.exe NamespaceClassUsingI ssues.cpp

NamespaceClassUsingIssues.cpp: In function ‘int main()’ :
NamespaceClassUsingIssues.cpp:121: error: invalid init ialization of

reference of type ’const NamespaceA::A<int>&’ from expres sion of type ’
A<int>’

NamespaceClassUsingIssues.cpp:80: error: in passing arg ument 2 of ‘
NamespaceA::A<double> NamespaceB::foo(std::ostream&, const
NamespaceA::A<int>&)’

While the above error message generated by g++ here is not allthat great, at least the
compiler catches the mistake.

57

D
R

A
FT

Takehome Message: Always dousing SomeNamespace::SomeClass to inject the names
from other namespaces that you want to use to protect yourself from others who pollute the
global namespace.

3. What happens when the user code employs ausing namespace NamespaceA
directive when there are conflicting global names?

Since there is a global class::A , the user can not simply employ ausing namespace
NamespaceA directive or the compiler will complain that it does not knowwhich class to use.

In the above program, when one defines the macroSHOWERRONEOUSUSING DIRECTIVE
when compiling one gets:

$ g++ -ansi -pedantic -Wall -DSHOW_ERRONEOUS_USING_DIREC TIVE \
-o NamespaceClassUsingIssues.exe NamespaceClassUsingI ssues.cpp

NamespaceClassUsingIssues.cpp: In function ‘int main()’ :
NamespaceClassUsingIssues.cpp:120: error: use of ‘A’ is a mbiguous
NamespaceClassUsingIssues.cpp:45: error: first declare d as ‘

template<class T> class A’ here
NamespaceClassUsingIssues.cpp:10: error: also declared as ‘

template<class T> class NamespaceA::A’ here
NamespaceClassUsingIssues.cpp:120: error: parse error b efore ‘>’ token
NamespaceClassUsingIssues.cpp:121: error: use of ‘A’ is a mbiguous
NamespaceClassUsingIssues.cpp:45: error: first declare d as ‘

template<class T> class A’ here
NamespaceClassUsingIssues.cpp:10: error: also declared as ‘

template<class T> class NamespaceA::A’ here
NamespaceClassUsingIssues.cpp:121: error: parse error b efore ‘>’ token
NamespaceClassUsingIssues.cpp:122: error: ‘ab’ undecla red (first use

this function)
NamespaceClassUsingIssues.cpp:122: error: (Each undecl ared identifier

is reported only once for each function it appears in.)

Note that this type of example goes against the advise in [9, Item 59] where they say that it is
safe to employusing namespace SomeNamespace directives in*.cpp source files. This
example shows that this does not protect you from others thatpollute the global namespace.
Note that code that is written this way might compile one day and not the next as it is fragile
and can be broken by other people that pollute the global namespace.

Takehome Message: Never employusing namespace AnyNamespace as you cannot
guarantee the integrity of your code since people outside ofyour namespace can cause your
code to not compile.

58

D
R

A
FT

D Arguments for adopting a consistent code formatting style

While there are reasonable ways to handle different code formatting styles within a project (e.g.
custom file styles in emacs), there are arguments for preferring a more consistent code formatting
style that is used throughout a project by all developers in the project. It is typically more difficult
to modify code than to read code that uses an unfamiliar coding style and therefore consistent
coding styles is more important in cases where multiple developers modify the same code.

One of the more lenient opinions on coding style in the literature comes from [9, Item 0] where the
authors state:

“Do use consistent formatting within each source file or eveneach project, because it’s
jarring to jump around among several styles in the same pieceof code. But don’t try to
enforce consistent formatting across multiple projects oracross a company6”.

Much stronger arguments for working toward a consistent code formatting style within a project
are made by other individuals and organizations who represent a wide range of views of software
development. These organizations and persons vary from open source projects (e.g. GNU) to
newer Agile methods (e.g. Extreme Programming) to large software companies (e.g. Microsoft).
As different as these various people and organizations viewthe nature of software (e.g. GNU vs.
Microsoft) and how it should be developed (e.g. GNU vs. Extreme Programming), they all agree
that some consistency in coding style is a good idea.

A few points are worth making before looking at opinions on formatting style expressed by these
different individuals and organizations. In each of the references cited, the individual or
organization gives a justification for the opinions expresses and it is up to the reader to weigh these
arguments on their own. Also, just because an opinion is expressed by an “expert” does not in and
of itself automatically give that opinion a lot of credence.However, when a wide number of
different and diverse “experts” espouse the same opinion, then such a point of view should be
considered more seriously.

D.1 Statements on coding style from varied persons and/or organizations

Here we overview some options on consistent code formattingstyle from a varienty of sources.

D.1.1 Open source software (the GNU project)

On one end of the spectrum is open source software that one canthink of as the freest form of
software. A GNU package is usually not even developed by a cohesive set of developers but yet the
official GNU Coding Standard7 states:

6The implicit assumption in this latter qualification is thatdevelopers don’t interact heavily with multiple projects
and multiple projects don’t interact much with each other and therefore there is typically little advantage to having a
company-wide code formatting standard. However, if the same developers work together on multiple projects and go
back and forth between projects frequently, it is unclear what the opinion of the authors would be in this case.

7http://www.gnu.org/prep/standards/standards.html

59

D
R

A
FT

“The rest of this section gives our recommendations for other aspects of C formatting
style ... We don’t think of these recommendations as requirements ... But whatever
style you use, please use it consistently, since a mixture ofstyles within one program
tends to look ugly. If you are contributing changes to an existing program, please
follow the style of that program”.

While the above passage does not mandate a consistent codingstyle within a GNU package
(because it can’t, its free software), it does recommend a coding style8 and it asks that each project
please use a consistent coding style thorough a GNU project.

D.1.2 Agile Methods (Extreme Programming)

While the Extreme Programming and GNU movements are miles apart in terms of how it expects
coders to work together to create code, they both agree that using a consistent coding style within a
project is important.

In his popular 1999 book “Extreme Programming Explained” [2], Kent Beck explicitly listed
“Coding Standards” as one of XP’s twelve recommended practices. In this book, Beck states

“You couldn’t possibility ask the team to code to a common standard. Programmers
are deeply individualistic, and would quit rather than put their curly braces somewhere
else. Unless:

• The whole of XP makes them more likely to be members of a winning team.

The perhaps they could be willing to bend their style a little. Besides, without coding
standards the additional friction slows pair programming and refactoring
significantly”.

In this first book, Beck also comments on coding standards in the context of “collective ownership”
of code by stating:

“You couldn’t possibly have everybody potentially changing anything anywhere.
Folks would be breaking stuff left and right, and the cost of integration would go up
dramatically. Unless:

• You integrate after a short enough tie, so that chances of conflicts go down.

• ...

• You adhere to coding standards, so you don’t get into the dreaded Curly Brace
Wars.

Then perhaps you could have anyone change code anywhere in the system when they
see the chance to improve it”.

8The official GNU formatting style is one of the built-in styles in Emacs called the “gnu” style

60

D
R

A
FT

As a result, many XP projects have insisted on requiring every member of the team to code in the
same way. So much to the point that one should not be able to tell who wrote a piece of code just
in how it is formatted. As of this writing, almost every source of information on XP on the Internet
takes a very strong opinion on the adoption of a consistent coding style by an XP group. The
specific details of the coding style are not important, what is important is that everyone on the team
helps to formulate and agrees to use the same coding style.

In his updated 2005 book “Extreme Programming Explained: Second Edition” [3], Kent Beck has
restructured XP and now the “Coding Standards” practice is no longer specifically listed as a
practice. Does this mean that consistent code formatting isnot longer important in XP? The simple
answer is no. In her article “The New XP”9 which outlines the second edition of Beck’s book and
compares it to the first edition, Michele Marchesi states:

“You must note that in the new XP we cannot find original practices ofcoding
standards, that is considered obvious, ... ”

And to put to rest any doubt how Beck himself feels about consistent coding styles he states in the
second edition:

“For example, people get passionate about coding style. While there are undoubtedly
better styles and worse styles, the most important style issue is that the team chooses
to work towards a common style. Idiosyncratic coding stylesand the values revealed
by them, individual freedom at all costs, don’t help the teamsucceed”.

Therefore, it is clear that the flagship of the Agile programming movement, XP, clearly advocates
that a team of developers should work towards a consistent code formatting style.

D.1.3 Code Complete

In [6], Steve McConnell makes a strong argument that groups should adopt a consistent coding
standard, including reasonable guidelines for the formatting of source code.

There are several places in this book where McConnell stresses the importance of using a
consistent formatting style in a group project:

• “The bottom line is that the details of a specific method of structuring a program are much
less important than the fact that the program is structured consistently” [6, Section 31.1].
This quote is almost an exact paraphrase of the statements made in the GNU coding standard
document and by Beck in the Extreme Programming books mentioned above.

• “The importance to comprehension and memory of structuringone’s environment in a
familiarly way has lead some researchers to hypothesize that layout might harm an expert’s
ability to read a program if the layout is different from the scheme the expert uses (Shell
1981, Soloway and Ehrlich 1984)” [6, Section 31.1]. This implies that working with an
unfamiliar style might handicap expert coders more than beginner and intermediate coders.

9 http://www.agilexp.org/downloads/TheNewXP.pdf

61

D
R

A
FT

• “Structuring code is important for its own sake. The specificconvention you follow is less
important than the fact that you follow the same convention consistently” [6, Chapter 31].

• “Many aspects of layout are religious issues. Try to separate objective preferences from
subjective one. Use explicit criteria to help ground your discussions about style preferences.”
[6, Chapter 31].

• “Using conventions to spare you brain the challenge of of remembering arbitrary differences
between different sections of code .” [6, Section 34.1].

• “The point of having coding conventions is to mainly reduce complexity. When you
standardized decisions about formatting, loops, variablenames, modeling notations, and so
on, you release mental resources that you need to focus on more challenging aspects of the
programming problem. One reason coding conventions are so controversial is that choices
among the options have some limited aesthetic base but are essentially arbitrary. People have
the most heated arguments over their smallest differences.Conventions are most useful
when they spare you the trouble of making and defending arbitrary decisions. They are less
valuable when they impose restrictions in more meaningful areas.” [6, Section 34.1].

• “The motivation behind many programming practices is to reduce a programs’ complexity,
and reducing complexity is arguably the most important key to being an effective
programmer.” [6, Chapter 34].

• “When abused, a programming convention can be a care that’s worse than the disease. Used
thoughtfully, a convention adds valuable structure to the development environment and helps
with managing complexity and communication.” [6, Chapter 34].

• “In general, mandating a strict set of technical standards from the management position isn’t
a good idea.” [6, Section 28.1].

• “If someone on a project is going to define standards, have a respected architect define the
standards rather than a manager ... If the architect is regarded as the projects’ thought leader,
the project team will generally follow standards set by thatperson.” [6, Section 28.1].

• “If your group resists adopting strict standards, considera few alternatives: flexible
guidelines, a collection of suggestions rather than guidelines, or a set of examples that
embody the best practices.” [6, Section 28.1].

• “Even if your shop hasn’t created explicit coding standards, reviews provide a subtle way of
moving toward a group coding standard–decisions are made bythe group during reviews,
and over time group derives its own standards.” [6, Section 28.1].

One could summarize that McConnell advocates that having a consistent coding style as being an
advantage in many ways but cautions that the standards should be developed by the programmers
in the group and not dictated by nontechnical managers.

D.1.4 Lockheed Martin Joint Strike Fighter C++ Coding Standard

TheJoint Strike Fighter Air Vehicle C++ Coding Standardsdocument [5] from Lockheed Martin
defines C++ coding standards for high consequence applications (i.e. the multi-billion dollar JSF

62

D
R

A
FT

program). While this standard is not the most strict standard out there, it does mandate many
different aspects of code formatting such as the placement and indentation of braces ’{}’ (AV
Rules 59, 60, and 61) and the formatting of function prototypes (AV Rule 58). The point is that
standards for high consequence (i.e. low tolerances for defects) may legitimately or otherwise
require greater uniformity in source code. While some of theformatting mandates of this
document are different than those suggested in [6, Chapter 31], this JSF standard in general is
advocated by such individuals as Bjarne Stroustrup10 and is therefore not without some merit.

D.2 The keyboard analogy for coding styles

The issues involved in going back and forth between different unfamiliar coding styles are similar
to the issues in going back and forth between different computer keyboard layouts. While some
people may naturally prefer one type of keyboard to another (e.g. such as preferring an ergonomic
keyboard to avoid problems with repetitive stress injuriesor people with larger hands having
trouble with smaller keyboards11), a person is most proficient when using a single type of keyboard
for a long period of time. While a person can generally get used to using a few different types of
keyboards that are used frequently (such as the ergonomic keyboard for a desktop computer and a
smaller laptop keyboard), having to work occasionally on a very different keyboard really slows
down a good typer and increases typing mistakes. For example, a person who uses PC-style
keyboards with the Control key on the lower left, are completely handicapped when using a Sun
keyboard where the Control key is where the Caps Lock key is ona PC keyboard.

When given enough time, almost anyone can become accustomedto any reasonable keyboard
layout and can be productive (as long a unusual physical constriants are not involved). As long as
the person uses the keyboard consistently, the productivity will be about the same as with a more
favored keyboard layout. Therefore, except for certain physical constraints, a person can learn how
to use most keyboard layouts given enough time, but switching back and forth occasionally
between different keyboards really damages productivity and increases mistakes.

The same is true for having to read and modify code that uses different coding styles. Just about
anyone can become accustomed to just about any reasonable coding style if given enough time
working with a particular style. However, switching back and forth frequently between different
coding styles really does damages productivity and increases coding mistakes for some people, just
as switching back and forth between different keyboards canreally damage productivity and
increase typing mistakes.

D.3 Conclusions

The antagonism between pushing a common formatting style and allowing for individual freedom
is similar to a system-wide optimization problem that involves a number of subsystems. In our
case, the subsystems are individual coders and the whole system is the team as a whole. Optimizing

10http://www.research.att.com/˜bs/C++.html
11Computer mice layouts show even greater variability than keyboards and going between different types can hurt

prductivity even greater. For example, a standard mouse could not be more different than a trackball-type of mouse
and going from a standard mouse to a trackball only occasionally can severely degrade productivity if the individual is
unfamiliar with the trackball.

63

D
R

A
FT

each subsystem separately would mean that each developer would own and code a district part of
the overall system. While this approach maximizes individual developer productivity, it does not
maximize overall productivity in that it discurrages and hinders collective code ownership that has
been demonstrated to be highly effective in the right settings (e.g. Extreme Programming). On the
other hand, an overly ridged code formatting standard will allow for collective code ownership but
it will also damage the individual productivity of every member of the team. Therefore, the
“optimial” solution to the code formatting problem is to have the group adopt enough of a uniform
style to forster collective code ownership and speed code reviews, but not to needlessly damage
individual coding productivitiy. The balance between these conficiting goals must be handled with
care and only group communication along with experience andexperimentation will yeild a
near-optimal solution to the code formatting standards problem for a particular team of developers.

While the above varied sources have different levels of opinions on the importance on consistent
code formatting, they all agree that it is the developers themselves that should come up with the
guidelines, and not non-technical managers. They also all seem to agree that a coding standard that
is too ridged will do more harm than good (i.e. by damaging theproductivity and moral of
individual programmers).

The majority opinion of these experts, therefore, seems to be that a team of software developers
should get together and collectively decide on a sufficient set of guidelines for code formatting and
each member should try to follow the spirit of the agreed uponstyle as much as is reasonable while
being allowed to bend or break the guidelines when appropriate.

64

D
R

A
FT

E Guidelines for reformatting of source code

When a sufficiently common coding style is not being used by all developers in a project and no
recommendations for a common coding style exists, then someguidelines are needed for the
situations where code written by one individual is modified by another individual that uses a
different coding style. These guidelines address how developers should conduct themselves when
modifying source files written largely by someone else.

1. First and foremost, each developer should respect other developer’s formatting styles when
modifying code that other developers have written. If a developer has a preferred Emacs
style, then that style should be listed explicitly at the topof each source file that is modified.
This will help other developers that use Emacs to stay consistent with the file’s style.

2. When only small changes are needed, a developer should abide by the formatting style
already in use in the file. This helps to respect other developers and helps to avoid needless
changes for the version control system to have to track. Again, when user-defined
file-specific Emacs styles are specified, then it is easy to maintain a file’s style when editing
files through Emacs.

3. Reformatting a file written by someone else and checking itin is only justified if significant
changes are made. Also, if a developer needs to understand a complicated piece of code in
order to make even perhaps a small change in the end, then thatdeveloper may also be
justified in reformatting the file. When a reformatting is done, the new Emacs formatting
style should be added to the top of the source file in order to make it easier for the original
owner of the file and other developers to maintain the new style.

4. Multiple re-formats of the same file should not be checked in over and over again as this will
result in massive increases the the amount of information that the version control system
needs to keep track of and makes diffs more difficult to perform.

The above guidelines ensure that individuals are given maximal freedom to format code to their
liking but also helps to foster the shared ownership and development of code. In addition, the use
of user-defined file-specific formats makes it easy for developers to accommodate formatting styles
different from their own.

65

D
R

A
FT

66

D
R

A
FT

v1.27

D
R

A
FT

	Introduction
	Alpha-numeric item designations
	Naming conventions (NC)
	Naming and organization of source files (NOSF)
	Coding guidelines
	General coding guidelines (GCG)
	Error handling
	Memory management
	Object Control
	Object Introspection
	Miscellaneous coding guidelines

	Specification of formal arguments for C++ functions (SFA)
	Variations in passing single changeable objects

	Formatting of source code
	General principles for formatting of source code (FSCP)
	Specific source code formatting principles (FSC)

	Doxygen documentation guidelines
	General principles for function and class level documentation (DOXP)
	Specific Doxygen documentation principles (DOX)

	References
	Summary of guidelines
	Summary of ``C++ Coding Standards'' (CPPCS) with amendments
	Miscellaneous amendments to ``C++ Coding Standards''
	Amendments to items related to compiler/linker incompatibilities
	Amendments for 'using' declarations and directives

	Arguments for adopting a consistent code formatting style
	Statements on coding style from varied persons and/or organizations
	Open source software (the GNU project)
	Agile Methods (Extreme Programming)
	Code Complete
	Lockheed Martin Joint Strike Fighter C++ Coding Standard

	The keyboard analogy for coding styles
	Conclusions

	Guidelines for reformatting of source code

